Overview of ALD-Activities for Optical Applications: Materials, Refractive and Diffractive Optics

Adriana Szeghalmi, ^{1,2}, S. Shestaeva¹, Astrid Bingel¹ L. Ghazaryan², K. Pfeiffer², S. Ratzsch²

¹Fraunhofer Institute for Applied Optics and Precision Engineering ²Friedrich Schiller University Jena, Institute of Applied Physics

a.szeghalmi@uni-jena.de

Workshop Optical Coatings for Laser Applications 2016 - Buchs

Outline

- Introduction
- Coating equipment
- Results
 - Materials
 - Interference Coatings
 - Diffractive Optics
- Outlook

Dr. Adriana Szeghalmi

Professional career since final degree

10/2015 -to date
 05/2010-to date
 05/2007-04/2010
 05/2007-04/2010
 04/2005-04/2007
 04/2007
 04/2007
 05/2007 - 04/2007
 04/2005 - 04/2007
 04/2005 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/2007
 05/2007 - 04/200

University education

- 07/2001-02/2005 PhD studies, University of Würzburg (Prof. W. Kiefer)
- 04/2000-03/2001
- 10/1997-06/2001

Exchange student at the University of Würzburg Study of Chemistry and Physics, Babes-Bolyai University, Romania

ALD Team

Lilit Ghazaryan Kristin Pfeiffer Vivek Beladiya Svetlana Shestaeva Astrid Bingel David Kästner

Alumni: M. Sc. Haiyue Yang Dr. Pascal Genevée M. Sc. Ernest Ahiavi Dr. Stephan Ratzsch

The ALD Solution to Enhance Optical Performance

ESA, Sentinel-2

[1] www.marquardt-kempen.de/s/cc_images/cache_2435481376.jpg?t=1362993658

[2] L. Ghazaryan, A. Szeghalmi, E. B. Kley, U. Schulz, DPMA Anmeldung. 2016

Page 5

Why ALD?

© Fraunhofer IOF

 SiO_2 ALD cycle

SiO₂ ALD cycle

IOF

Page 13

Coating Equipment

1. OpAL PEALD tool

- Oxford Plasma Technologies (UK)
- Open loaded ALD tool
- **Top-Flow reactor**
- ICP plasma
- Up to 200 mm diameter wafers (150 mm square)
- Height up to 20 mm
- Up to 4 precursors ($H_2O + 3$ Metal Precursors)
- Temperature range 25°C...200°C
- Ellipsometry ports, Woollam ellipsometer
- ca. 400k€
- Installed 2011
- Oxides

Coating Equipment

2. Sunale R200 PEALD tool

- Picosun Oy (F)
- Load-lock and open loaded ALD
- Hot-wall top-flow dual chamber design
- RF Plasma
- Up to 200 mm diameter wafers (150 mm square)
- Height up to 100 mm
- Up to 6 precursors ($H_2O + 5$ Metal Precursors)
- Temperature range 25°C...500°C
- Load-lock integrated in GloveBox
- ca. 400k€
- Installed 2013
- Metals and Oxides

Larger Reactor Configuration

In commissioning

- Diameter 330 mm
- Height up to 100 mm
- Thermal and Plasma Enhanced ALD
- To be installed March 2017 @ IOF Jena

Outline

- Introduction
- Coating equipment
- Results
 - Materials
 - Interference Coatings
 - Diffractive Optics
- Outlook

Materials

- development of the thermal and/ or PEALD processes
 - SiO_2 , Al_2O_3 , TiO_2 , HfO_2 , Ta_2O_5
 - MgF_2 , CaF_2 , LaF_3
 - iridium
 - alucones & nanoporous Al₂O₃
 - composite materials & nanoporous SiO₂
- Iiterature: Ru, Ag, Au, W, graphene, nitrides, SrTiO₃, Nb₂O₅, ZrO₂...
- optical properties
- morphology
- mechanical properties

$$h_c = \frac{\Gamma E_f}{Z\sigma^2}$$

 h_c critical coating thickness E_f Elastic modulus film Γ fracture resistance Z geometrical factor (1.976) σ mechanical stress

Oxides: Summary of Refractive Index

TiO₂

Titanium(IV) isopropoxide Ti $[OCH(CH_3)_2]_4$ heated and bubbled at 45-60°C $H_2O \\ H_2O_2 \\ O_2 Plasma$

+

+

Titanium(IV) chloride TiCl₄

 H_2O

TiO₂ Film Growth

- Linear ALD growth with number of cycles
- Influence of Deposition Temperature and O₂-Plasma

TiO₂ Refractive Index

- PEALD processes provide higher refractive index at lower temperature than the thermal ALD of titania
- Temperature has little influence in PEALD of titania

TiO₂ Thickness Uniformity

- TiO_2/Al_2O_3 PEALD 120°C
- Ø 150 mm Si wafer: SD 1 $\sigma = 1.07\%$
- Homogeneity (Max-Min/2d_{average}) = 2.1%

n @633 nm = 2.4232 ± 0.004

TiO₂ Tensile Mechanical Stress

Tetrakis(dimethylamino)hafnium(IV) $[(CH_3)_2N]_4Hf$ heated and bubbled at 50°C

$$\begin{array}{c} CH_3 CH_3 \\ H_3 C-N \\ H_1 \\ H_3 C-N \\ H_1 \\ H_3 C-N \\ CH_3 \\ CH_3 \\ H_3 \end{array}$$

O₂ Plasma

+

Page 25 © Fraunhofer IOF

Optical Properties – Influence of Temperature

high scattering losses above 200°C deposition temperature

Thickness and Refractive Index Uniformity

- HfO_2 PEALD 100°C
- Ø 200 mm Si wafer: SD 1 σ = 2.24%
- Homogeneity (Max-Min/2d_{average}) = 4.5%
- Plasma flow from the top

HfO₂ Refractive Index – PVD & ALD

O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, U. Kaiser, Opt. Mater. Express 2011, 1, 278.

HfO₂ TEM image

- deposited at 100°C
- ca. 5 nm Nanocrystallites
- ca. 3.5 nm HfO_2/SiO_2 composite layer at the Si-wafer interface

HfO₂ Tensile Mechanical Stress

- σ increases with increasing deposition temperature due to crystallization
- σ slightly increases with increasing ion energy

HfO₂ Tensile Mechanical Stress

• σ decreases in nanolaminates (HfO₂/SiO₂ and HfO₂/Al₂O₃)

Trimethylaluminum $(CH_3)_3Al$ own vapour pressure

 H_2O O_2 Plasma

+

+

 $H_3C CH_3$

Aluminum chloride AlCl₃ H_2O

$100 \text{ nm Al}_2\text{O}_3 \text{ on } 200 \text{ mm Si w afer}$

Influence of Deposition Temperature

- impact on reproducibility of refractive index
- temperature has less influence in PEALD processes than in thermal ALD

Thickness Uniformity

- Al_2O_3 thermal 300°C
- Ø 200 mm Si wafer: SD 1 $\sigma = 1.1\%$
- Homogeneity (Max-Min/2d_{average}) = 2.44%

Optical Losses

- Al_2O_3 with low optical losses have been achieved
- confirmed by laser calorimetry measurements

@ 1064 nm on 300 nm thick Al_2O_3 , ca. 2,5 ppm

Al₂O₃ Tensile Mechanical Stress

- σ decreases with increasing deposition temperature
- PEALD coatings show lower mechanical stress than thermal ALD alumina
- residual stress = \sum (thermal stress + intrinsic stress)

Al₂O₃ FTIR Spectra

- -OH content decreases with increasing temperature
- different hydrogen-bonding in thermal vs. PEALD processes

Tris(dimethylamino)silane $[(CH_3)_2N]_3SiH$ own vapour pressure

$$\begin{array}{cccc} H_{3}C \ CH_{3} \\ H_{3}C \ N \ CH_{3} \\ N-Si-N \\ H_{3}C \ H \ CH_{3} \end{array}$$

Bis(diethylamino)silane $[(C_2H_5)_2N]_2SiH_2$ heated and bubbled at 70°C

Page 39 © Fraunhofer IOF O_2 Plasma

+

Influence of Substrate Material

calibration curves are required

Optical Losses

- materials with low optical losses have been achieved
- confirmed by laser calorimetry measurements
- SiO₂ PEALD 200°C example

@ 1064 nm on 300 nm thick SiO₂, ca. 1,5 ppm (Laser Zentrum Hannover)

Thickness Uniformity

- SiO₂ PEALD 100°C
- Ø 200 mm Si wafer: SD 1 $\sigma = 1.36\%$
- Homogeneity (Max-Min/2d_{average}) = 2.31%

Composites and Nanoporous SiO₂

• atomically mixed Al_2O_3/SiO_2 composites and selective removal of Al_2O_3

L. Ghazaryan, A. Szeghalmi, E. B. Kley, U. Schulz, DPMA Anmeldung. 2016 L. Ghazaryan, A. Szeghalmi, E. B. Kley, DPMA Anmeldung. Anmeldetag 24. Februar 2015. 10 2015 203 307.4

Nanoporous SiO₂

- atomically mixed Al_2O_3/SiO_2 composites and selective removal of Al_2O_3
- precisely control porosity and refractive index through atomic composition

Page 44

Applications of Nanoporous SiO₂

antireflection coatings

Applications of Nanoporous SiO₂

diffusion membrane

Planarisation

Al₂O₃:SiO₂ alloy

High efficiency transmission gratings

Outline

- Introduction
- Coating equipment

Results

- Materials
- Interference Coatings
- Diffractive Optics
- Outlook

Antireflection Coating SEM Image

•	Total	391 n
•	SiO ₂	97.3
•	HfO_2	29.8
	SiO ₂	19.5
•	HfO_2	153.5
•	SiO ₂	10.4
	HfO_2	40.5
	SiO ₂	19.1
	HfO_2	18.6

Antireflection Coatings

[3] K. Pfeiffer, S. Shestaeva, A. Bingel, P. Munzert, L. Ghazaryan, C. van Helvoirt, W. M. M. Kessels, U. Sanli, C. Grévent, G. Schütz, M. Putkonen, I. Buchanan, L. Jensen, D. Ristau, A. Tünnermann, A. Szeghalmi, Opt. Mater. Express 6 (2016) 660

[4] A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez. Appl. Opt. 48 (2009) 1727

Page 49

Dichroic Mirror at 355 nm

- 30 layers [HfO₂(Al₂O₃) and SiO₂]
- ca. 1.9 µm total thickness
- high adhesion coating to substrate
- >99.5% reflectance at 45° AOI @355

Total deposition time: ~4 days NO optical monitoring

100

Exp.

Design

av -no

Highly Reflective Dichroic Mirror

cracking of the coating and substrate

Highly Reflective Dichroic Mirror

- cracking of the coating and substrate
- crack occurs after deposition

Outline

- Introduction
- Coating equipment

Results

- Materials
- Interference Coatings
- Diffractive Optics
- Outlook

Resonant Waveguides

A. Szeghalmi, E. B. Kley, M. Knez. J. Phys. Chem. C 114 (2010) 21150
A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez. Adv. Funct. Mater. 20 (2010) 2053

Polarizers

[1] T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E. B. Kley, A. Tünnermann. Nanoscale Research Lett. 2011, 6, 558
[2] Y. Bourgin, T. Siefke, T. Käsebier, P. Genevée, A. Szeghalmi, E. B. Kley, U. D. Zeitner. Optics Express, 2015, 23, 16628

High Efficiency Transmission Gratings

- measured diffraction efficiency (-1 order) grating for TE-Polarisation 97.5%
- measured diffraction efficiency (-1 order) grating for TM-Polarisation 95%

S. Ratzsch, E. B. Kley, A. Tünnermann, A. Szeghalmi. Materials, 2015, 8, 7805-7812.

S. Ratzsch, E. B. Kley, A. Tünnermann, A. Szeghalmi. Optics Express, 2015, 23, 17955-17965.

S. Ratzsch, E. B. Kley, A. Tünnermann, A. Szeghalmi. Nanotechnology, 2015, 26, 024003 (1-11).

Page 56

High Index Contrast Grating

- fabricate a low fill-factor grating in SiO₂
- conformal overcoating with ALD
- TiO_2 thickness ca. 44 nm

ALD Portfolio @Jena (Fraunhofer IOF & University)

ALD CENTRE for OPTICS

- ALD Material Development
- Interference Coating Systems
- Nano and Microstructured Optics

Adriana.Szeghalmi@iof.fraunhofer.de

Acknowledgement

Andreas Tünnermann Ernst Bernhard Kley Uwe Zeitner Peter Munzert Ulrike Schulz Norbert Kaiser

IAP and IOF colleagues

