

High Performance Laser Mirrors

produced with Plasma-Assisted Reactive Magnetron Sputtering

Dr. Thorsten Best Optics Balzers Jena GmbH

Components for Laser Applications

Anti-Reflective:

- windows
- laser and non-linear crystals

Filters & Polarizers:

- laser line cleaning
- Raman edge & bandpass filters
- color-corrected laser line suppression
- thin film polarizers

Mirrors:

- low-loss cavity mirrors
- dichroics
- high LIDT (CW, ns & ultrashort pulse applications)

Coating Processes

Laser, Space & Defence

- Ion-Assisted Deposition
- Ion-Beam Sputtering
- Magnetron Sputtering

All Processes controlled via VIS/NIR Optical Broadband Monitoring

Plasma-Assisted Reactive Magnetron Sputtering

Laser, Space & Defence

- Bühler Leybold Optics Helios plants
- dual magnetron + oxidizing plasma source
- flexible choice of layer materials: SiO₂, Nb₂O₅, Ta₂O₅, HfO₂, Al₂O₃

Significantly improved LIDT using RF magnetron technology for deposition of SiO_2 from ceramic target

→ H.Hagedorn, Sputtered interference filters with high laser damage threshold, OIC 2013 FB.2

Complex Mirror Characteristics enabled by BBM

BBM enables complex suppression requirements for competing transition lines.

LIDT at 1064nm

Laser-induced Damage Threshold S-on-1 measurement according to ISO 21254-2

Wavelength Operating mode Pulse duration Beam diameter Spatial beam profile AOI Polarization Number of test sites Spot matrix Distance of the spot sites Online detection system Offline detection system Environmental conditions Mounting of optical components 1064 nm pulsed @ 100 Hz 12 ns (FWHM) 322 μ m (1/e²), 227 μ m (effective) approx. gaussian (0±1)° linear 154 hexagonal close-packed $\Delta = 1,5$ mm scattered light by Si-photodiode Nomarski microscopy (magnification ≤ 200 ×) air commercial kinematic mount

Key feature: Laser Damage Threshold at 1064nm

Number of pulses	First observed damage [J/cm ²]
2	213
5	103
13	103
34	103
88	103
230	103
580	103
1,500	103
3,900	103
10,000	103

Wavelength Operating mode Pulse duration 1064 nm pulsed @ 100 Hz 12 ns (FWHM) LIDT not measurable: insufficient laser power!

The Role of Particle Defects

Laser-Induced Damage at 355nm

Number of pulses	First observed damage [J/cm ²]
4	17.23
10	15.81
23	15.81
54	15.81
130	15.81
310	15.81
740	15.81
1,800	15.81
4,200	15.81
10,000	15.81

Wavelength Operating mode Pulse duration 355 nm pulsed @ 100 Hz 5 ns (FWHM)

Laser-Induced Damage at 266nm

Number of pulses	First observed damage [J/cm ²]
30	17.84
57	13.50
110	13.50
210	13.50
400	13.50
760	13.50
1,400	12.50
2,800	9.99
5,200	7.94
10,000	7.94

Wavelength Operating mode Pulse duration 266 nm pulsed @ 100 Hz 4,5 ns (FWHM)

LIDT for Ultrafast Laser Applications

Mirror LIDT for Ultrashort Pulses

Energy Fluence (J/cm²)

LIDT for Ultrafast Laser Applications

Dichroic 515/1030 nm s-pol

Wavelength (nm)

LIDT for Ultrafast Laser Applications (Dichroic)

Mirror LIDT for Ultrashort Pulses

Energy Fluence (J/cm²)

Summary

Plasma-Assisted Reactive Magnetron Sputtering, using RF Magnetron Technology and Ceramic Targets, in combination with Optical Broadband Monitoring, can provide High Performance Laser Mirrors with Complex Spectral Functions, Low Loss, and Superior Resistance to Laser-Induced Damage.

