
Auftragschweissen mit dem Faserlaser

Dr.-Ing. Thomas Peters

Sulzer Innotec

Laser Surface Engineering

- Sulzer Innotec
- Warum ein Faserlaser?
- Konzeption einer multifunktionalen Laserschweissanlage
- Beispiele für das Laserauftragschweissen

Sulzer – Produkte und Dienstleistungen

Sulzer Pumps

Pumpen und zugehörige Dienstleistungen

Sulzer Metco

Oberflächentechnologien und -dienstleistungen

- 1834 in Winterthur, Schweiz, gegründet
- heute mit ca 11.000 Mitarbeitern global an rund 120 Standorten tätig
- Kerntechnologien sindMaterialtechnologie undStrömungstechnik

Sulzer Chemtech

Komponenten und Services für Trennkolonnen und statisches Mischen

Sulzer Turbo Services

Services und Reparaturen für thermische Turbomaschinen

Sulzer Innotec

Auftragsforschung und technische Dienstleistungen

Laser bei Innotec

- Kompetenz-Zentrum für Laserschweissen bei Sulzer ab 1988: Entwicklung von
 - Anlagenkomponenten(Pulverdüsen, ...)
 - Geschäftsmodellen (Ventilpanzerung, ...)
 - Schweissprozessen (Einkristallschweissen, ...)
- Langjährige Erfahrung mit einer Vielzahl von Materialkombinationen
- Heute betätigt sich die Gruppe Laser Surface Engineering LSE als Laser-Servicedienstleister in verschiedensten Märkten – von der Medizinaltechnik über den Formenbau bis zu Gasturbinenkomponenten

Dienstleistungen und Anlagen

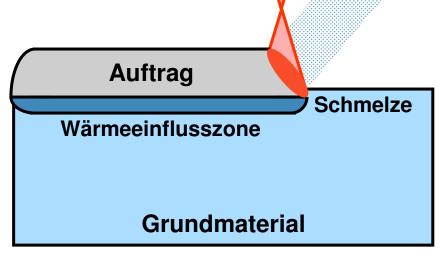
- Laserschweissen
- Laserbeschichten
- Laserauftragschweissen

Laser-Pulver-Auftragschweissen

2 kW CO2-Laser

150 W Nd:YAG-Laser

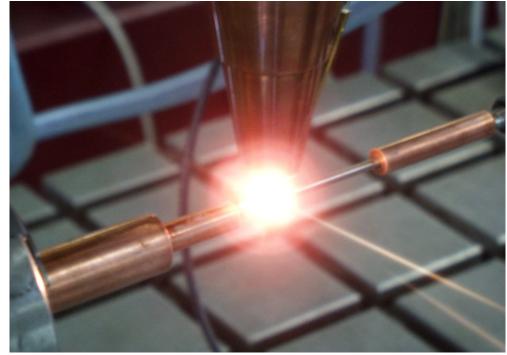
1.5 kW Faser-Laser



Laserstrahl

Pulverauftragschweissen – Wie das geht

- Laserstrahl mit definierten Strahldurchmesser auf dem Werkstück fokussiert
- pulverförmiger Auftragwerkstoff wird in inerten Trägergas transportiert und über Pulverdüse in Schmelzpunkt eingeblasen
- Relativbewegung zwischen Laser- und Pulverstrahl einerseits sowie Bauteil andererseits ergibt den Schweissauftrag



Warum Laserschweissen?

Sulzer Innotec

Laserschweissen bedeutet

- Hohe Leistungsdichte durch einen kleinen Strahlfokus
- Lokal begrenzter Wärmeeintrag, geringe Bauteilerwärmung

Das bedeutet

- Wenig bis keinen Verzug
 Wichtig für hochpräzise Bauteile wie Formwerkzeuge oder
 Blechkonstruktionen
- Geringe thermische Beeinträchtigung von temperaturempfindlichen Werkstoffen
 - z.B. hochwarmfeste Nickelbasislegierungen in Industriegasturbinen

SULZER

Laser-Pflichtenheft

Sulzer Innotec

gesucht: die "eierlegende Wollmilchsau"

- Sehr gute Strahlqualität (Fokussierung), damit gleichermassen für fügendes Schweissen und Auftragschweissen geeignet
- Glasfasergekoppelte Strahlführung für hohe Prozess-Stabilität
- Weiter Leistungsregelbereich von 50 W bis 1.5 kW (später 3 kW)
- Möglichst klein und kompakt für mobilen Einsatz
- Hoher elektrischer Wirkungsgrad für Steckdosenbetrieb
- Geringer Wartungsaufwand
- Niedrige Investitionskosten

www.eierlegendewollmilchsau.com

Vergleich der Wellenlängen

Lasertyp	CO ₂		Dioden, Nd:YAG, Faser		
Wellenlänge	10600 nm mittleres Infrarot		~1065 nm nahes Infrarot		
Strahlführung	Kupferspiegelsystem (CO ₂ schneidet Glas)	-	Glasfaser	+	
Absorbtion beim Auftragschweissen	~ 30% starke Reflektionen ⇒ höhere Leistung notwendig	_	~ 60% geringe Reflektionen ⇒ niedrigere Leistung notwendig	+	
Gefährdung des Auges	Absorbtion in der Hornhaut	0	Passiert Hornhaut und wird auf der Netzhaut fokussiert!	•	

Auswahl der Strahlquelle nach Pflichtenheft

Sulzer Innotec

Lasertyp	Faser	Diode	Nd:YAG	CO ₂
hohe Strahlqualität	+	-	0	+
Fasergekoppelter Laserstrahl	+	+	+	-
weiter Leistungsregel- bereich	+	+	- 0	-
Bauvolumen, mobiler Einsatz möglich	+	+	0	-
elektr. Wirkungsgrad	+	+	- 0	0
geringer Wartungs- aufwand	+	+	-	0

1.5 kW Faserlaser

Aber: Neue Technologie! Trotz exzellenter Referenzen aus der akademischen Welt bislang wenig Erfahrung aus dem industriellen Einsatz verfügbar.

Anlagen-Pflichtenheft

gesucht: die "Legeschermelkwurstmaschine"

- Mindestens 5 Achsen für optimale Strahlausrichtung im Raum und auf das Werkstück
- Modulares Anlagenkonzept für stationären und mobilen Einsatz
- Alle Anschlüsse und Steuerleitungen steckbar
- CNC-Steuerung Industriestandard
 - 5-Achsentransformation für simultane
 Achsbewegung in der Schweissbearbeitung
 - Ansteuerung aller relevanten Laserparameter, Schutzgaseinstellungen, Peripheriegeräte
 - Netzwerkanbindung, Tele-Wartung

Faserlaser-Anlage im stationären Betrieb

Faser-Laseranlage

1.5 kW Faser-Laser mit Kühler und CNC-Bedienpult

Faserlaser-Anlage im stationären Betrieb

Dreh-/Schwenktisch und Pulverförderer

Laserkopf mit 2 manuellen Achsen, Kühlwasseranschlüsse, Prozessgasanschlüsse

gesucht: der passende Stall!

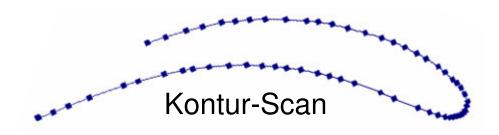
- Die eingesetzten Hochleistungs-Laser sind Klasse IV-Geräte!
- Der Gesetzgeber (und der gesunde Menschenverstand) fordern Klasse I ausserhalb der Anlage!

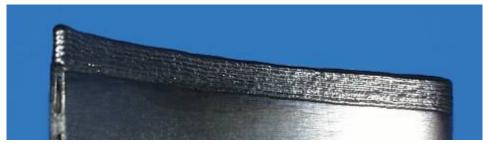
- Vollständige Einhausung notwendig
- Technische Absicherung des Verschluss-Betriebs (Türkontakt mit Quittierung)
- Schutzbrillen-Obligatorium innerhalb der Einhausung!

Das gilt auch für den mobilen Einsatz!

 Auch wichtig: Für die Maschine ist eine Konformitätserklärung vorhanden, die auf die EU "Maschinenrichtlinie" Bezug nimmt

Lasersicherheit

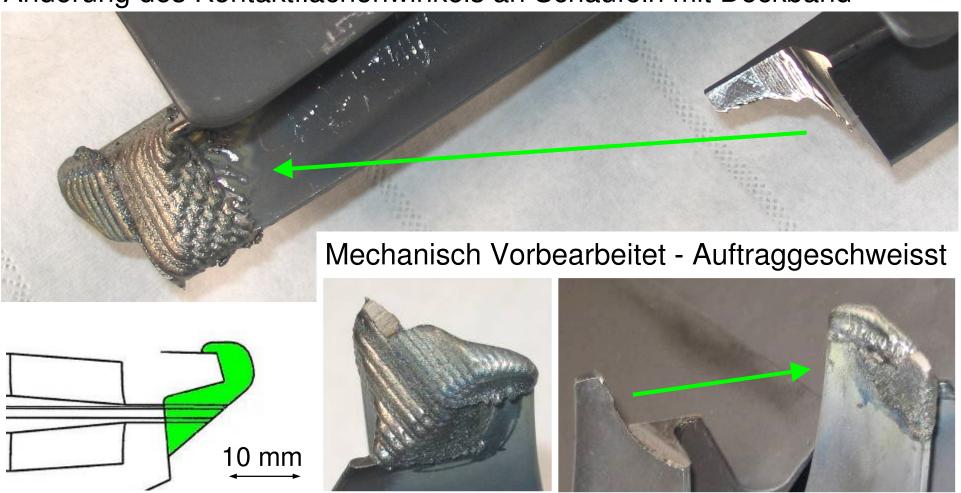



Faser-Laseranlage stationär in ihrer Sicherheits-Einhausung

Sulzer Innotec

IGT: Wohl bekannt – Aufbau der Schaufelkrone

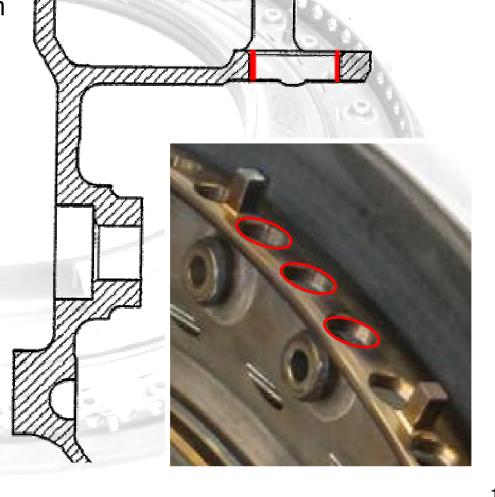
Schweissprozess


Schweissaufbau 6 mm

Sulzer Innotec

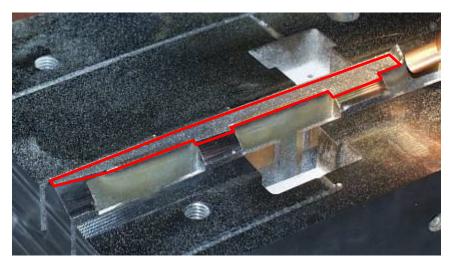
IGT: Etwas besonderes – Deckband-Modifikation

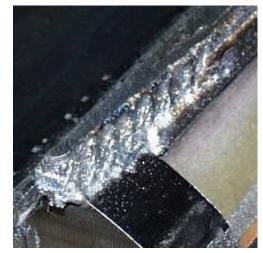
Änderung des Kontaktflächenwinkels an Schaufeln mit Deckband


EU-Projekt FANTASIA

Auftragschweissen auf der Bohrungsinnenseite, ~0.8 mm Aufbau, Ø 12 mm

Werkstoffkombination IN718 / IN718


Fluggasturbinen



Sulzer Innotec

Formwerkzeug

Aufbau eines Formstegs 200 x 10 mm, 10 mm hoch

- Grundwerkstoff:1.2343 (X38 CrMoV5 1)
- Aufbauwerkstoff:1.2083 (X42 Cr13)

Sulzer Innotec

Formwerkzeug

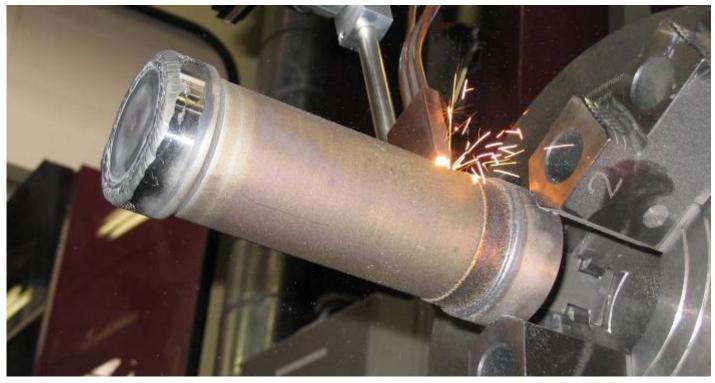
Schweissaufbau 27 mm hoch, ~ 1 mm dick (3+1 Lage)

Grundwerkstoff: 1.2344 (X40 CrMoV5 1)

Aufbauwerkstoff: 1.2083 (X42 Cr13)

Sulzer Innotec

Formwerkzeug


- Schweissaufbau auf Konus 0.25 hoch
- Innen-Ø 25 mm
- max. Verzug 1.5/100 auf den Innen-Ø!

Beschichten – Beispiele

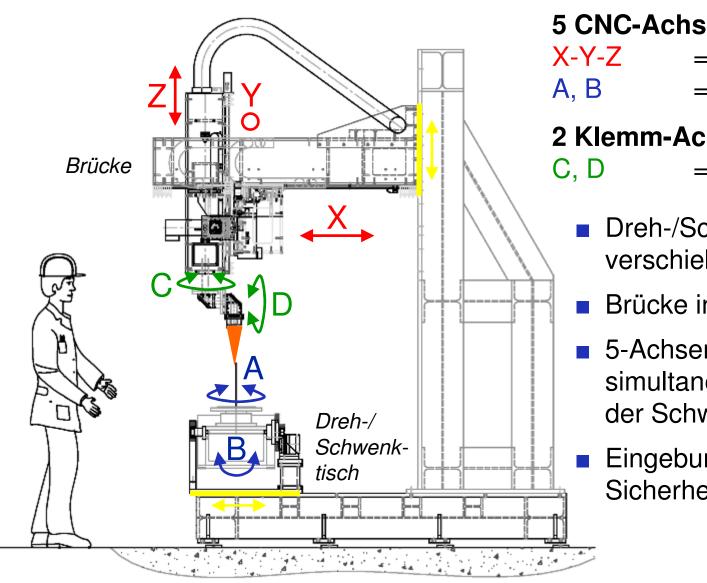
Sulzer Innotec

Stellitieren eines Ventilkörpers

Minimale Durchmischung mit dem Grundmaterial

Zusammenfassung

- Der Faserlaser ist im Kilowattbereich eine neue Strahlquelle, die mittelfristig den Nd:YAG-Laser in vielen Anwendungen ablösen wird und bezüglich Strahlqualität eine ernstzunehmende Konkurrenz zum Industriestandart CO₂-Laser darstellt.
- Der Faserlaser ist gleichermassen für Schweissen und Auftragschweissen wie auch Schneiden geeignet.
- Die kleine, kompakte und wartungsfreie Bauweise macht einen mobilen Einsatz möglich.
- Um die breiten Einsatzmöglichkeiten des Faserlasers abdecken zu können, wurde eine multifunktionale Laseranlage konzipiert.
- Sulzer Innotec deckt mit einem stationären 2kW CO₂-Laser, einem mobil einsetzbaren 1.5kW Faserlaser und einem gepulsten 150W Nd:YAG-Laser das Spektrum möglicher Laser(auftrag)schweissanwendungen bestmöglich ab.



Backup – mobiler Betrieb

Anlagenkonzept I – stationärer Betrieb

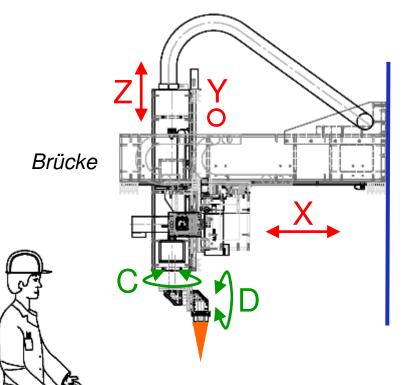
Sulzer Innotec

5 CNC-Achsen

 $= 700 \times 700 \times 500 \text{ mm}$

= 360°, 360°

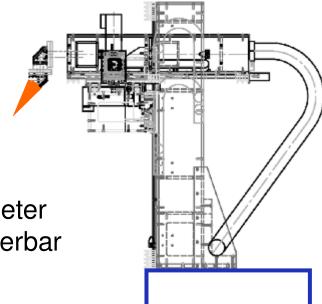
2 Klemm-Achsen


 $= 360^{\circ}, \pm 100^{\circ}$

- Dreh-/Schwenktisch verschiebbar und demontierbar
- Brücke in der Höhe verstellbar
- 5-Achsentransformation für simultane Achsbewegung in der Schweissbearbeitung
 - Eingebunden in stationäres Sicherheitskonzept

Anlagenkonzept II – mobiler Betrieb

Sulzer Innotec

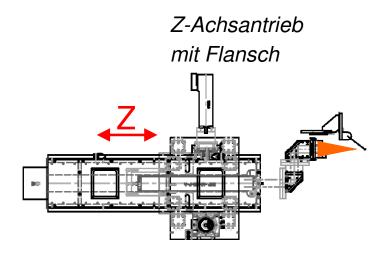


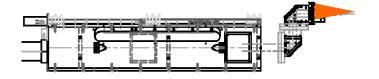
3 CNC-Achsen

 $X-Y-Z = 700 \times 700 \times 500 \text{ mm}$

2 Klemm-Achsen

C, D = 360° , $\pm 100^{\circ}$




- Brücke vor Ort an geeigneter
 Trägerkonstruktion montierbar
- Eingebunden in mobiles Sicherheitskonzept

Anlagenkonzept III und IV – mobiler Betrieb

Sulzer Innotec

1 bzw keine CNC-Achse

Z = 500 mm

2 Klemm-Achsen

C, D = 360° , $\pm 100^{\circ}$

- Z-Achskörper mit Bearbeitungskopf
- Wahlweise mit oder ohne eigenen Z-Achsantrieb
- Integration in Handhabungssystem vor Ort z.B. Drehmaschine
- Eingebunden in mobiles Sicherheitskonzept