EPMT Conference, Lausanne, 14th May 2009

Fibre Lasers for Precision Micromachining and Engraving

Steve Norman, Andy Appleyard SPI Lasers, Southampton, UK

Presenter: Dr Steve Norman, CTO, SPI Lasers

Agenda

- High Average Power CWM Lasers
 - Fiber Laser technology
 - Applications examples
- High Peak-Power ns Pulsed Lasers

Fiber Laser technology

Applications examples

Summary & Conclusions

CWM Lasers for Micromachining

- **→** 50W 200W Air-cooled
- → 100W 400W Water-Cooled

Unique design features optimised for high-speed processing

CWM Lasers: Flexibility in Power Control: 400W "R4" System Architecture

Single-emitter pump diodes can operate from DC to >100kHz - Laser output can be modulated correspondingly

Operating Modes: CW Laser ("DC" source) Power Linearity

Linear output power characteristic

- No change in the output linearity as laser power is increased
- Closed loop operation under modulated conditions

400W Laser output power linearity

Pulsed-Mode Operation for Micromachining Applications

High-Speed Pulsed Mode Modulation of CWM Lasers: Pulse Waveforms @ 70kHz

- 70kHz Pulse Profiles at controllable power / pulse energies
- Examples Applications: Fine Engraving: <20um Feature Size using pulse energies down to 0.2 mJ / pulse

Application Case Study I: Medical Devices Micromachining / Fine tube cutting

Cutting Nitonol Coronary Stents

- Well-proven, widespread applications with 50W / 100W / 200W lasers
- M^{2~}1.1 beam quality allows very fine kerf as low as 15um width
- Cutting speeds with conventional solid state lasers are limited by repetition rates of a few kHz
 - Productivity improvements >5x in cutting speeds achieved

Thicker-Wall Precision Cutting: Medical Devices (using a 400W CWM laser)

Case Study II, Micro-Welding: Beam Quality Choices

Gaussian Beam: Single-mode beam source (M² < 1.1)</p>

■ Micro-Welding: "Flat-Top" Profile Option (M² ~ 4)

Micro-welding of thin metals: non-Gaussian "flat-top" beam profile can improve coupling and weld uniformity EPMT Conference Lausanne, May 2009: Reproduction or distribution forbidden without written consent of SPI Lasers

Micro-Welding: Spot Size Management

MICRO WELDING: BEAM DIAMETER CONTROL

	SPOT SIZE, um		
		Measured	
BEAM OPTICS	Calculated	@ 50W	@ 400W
Collimator + 0.5BET + f200 Lens	120	122	128
Collimator + f200 lens	60	59	60
Collimator + f100 lens	30	28	34
Collimator+2x BET + f100 lens	15	20	19

Micro-Welding: Temporal Beam Shaping

- Waveform can be PROFILED TEMPORALLY
 - "Tailored energy" for Micro-Welding applications
 - Degrees of freedom: Pulse Rate / Peak Power / Pulse Energy / Energy Profile

Application Case Study III: Ceramic Scribing / Cutting

Alumina scribed with fiber laser 400um thick alumina 250mm/s, 75um centres, 250 um deep

High precision alumina substrates cut with CW-M fiber laser

Ceramic substrate images Courtesy of Synchron Laser

Micromachining with ns Pulsed Lasers

Processing Applications

- The majority of materials processing applications are governed by:-
 - Peak pulse power which is typically required to overcome processing thresholds.
 - Pulse energy which governs the amount of thermal energy available to effect any material processing.
 - Pulse duration which impacts the beam material interaction time.
 - **Power Density** which reflects the intensity of the laser energy on the substrate.
- It is a combination of all four of these parameters that needs to be considered in pulsed laser materials processing applications.

SPI Pulsed MOPA Fiber Laser

- Advantages of MOPA architecture:
 - > Pulse parameters can be controlled independently at different stages
 - Extensive pulse energy and peak power parameter space

20W Pulsed Laser Waveforms

Process optimisation via Peak power / pulse energy control via Waveform selection

Spot Overlap: Marking quality up-close

(one of several quality measures)

No Spot Overlap

- visible mark
- poor resolution
- · dotted-line

<5% Spot Overlap

- improved mark
- low resolution
- "scallop" edge

>60% Spot Overlap

- desired mark
- high resolution
- smooth line edge

Spot overlap is a key visual factor in determining mark quality

- Greater overlap produces a more continuous mark appearance
- >60% overlap desired for many marking applications

Metal Marking (Color Marking on Stainless Steel)

- Niche application but potentially high volume
- High repetition rates gives better contrast colours
- Higher repetition rate allows better control

* Image courtesy of A&P Instruments Co Ltd

Metal Engraving using ns Pulsed Lasers

- Operation from CW-500kHz gives total control of peak power and pulse energy giving fine processing control
- Engrave:
 - 25kHz Waveform 0
- Smoothing / Polishing / Finishing:
 - High-speed low-energy pulses, e.g. 250kHz Waveform 3
 - Single pass "cleans" mark & smoothes engraved surface

EXAMPLES

Solar Energy/Display Technology

- Scribing Molybdenum Films
 - The P1 scribe for thin film solar cells
 - Requires the selective removal of the molybdenum from the glass substrate.
 - Careful control of the pulse energy is crucial in order to;
 - completely remove the film,
 - produce minimal burr to the patterned edge,
 - → lack of cracking/delamination of the Mo film
 - no damage to the glass substrate.

20W; 125kHz WF2 4m/s scan speed 40µm scribe width

In Summary

- CWM Lasers have exceptional dynamic range for a wide range of micromachining applications
 - Ultra-fine cutting
 - Engraving
 - Micro-Welding
 - Thicker section cutting with fine kerf width
- MOPA high peak energy lasers:
 - Tailored Pulse characteristics give processing flexibility for application / materials / targeted features
 - Marking / engraving / cutting
 - Diamond / Metals / Thin-film oxides / Plastics

Performance, Versatility, Stability, Repeatability

www.spilasers.com

