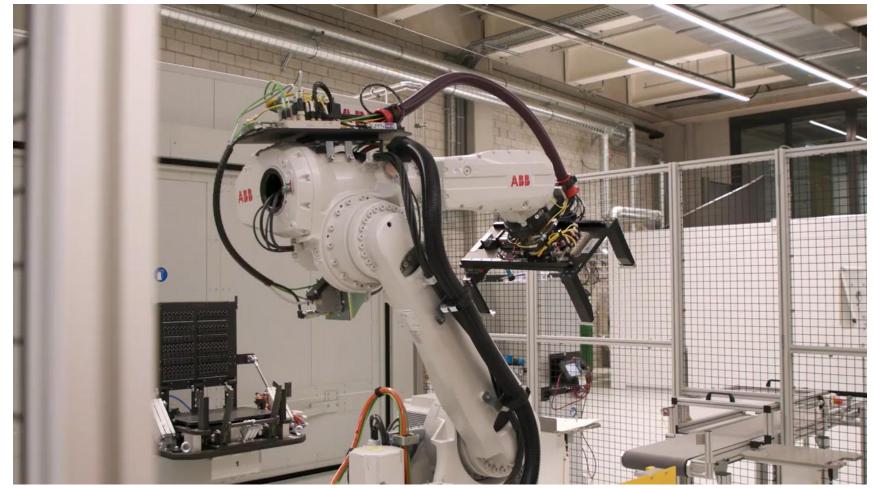
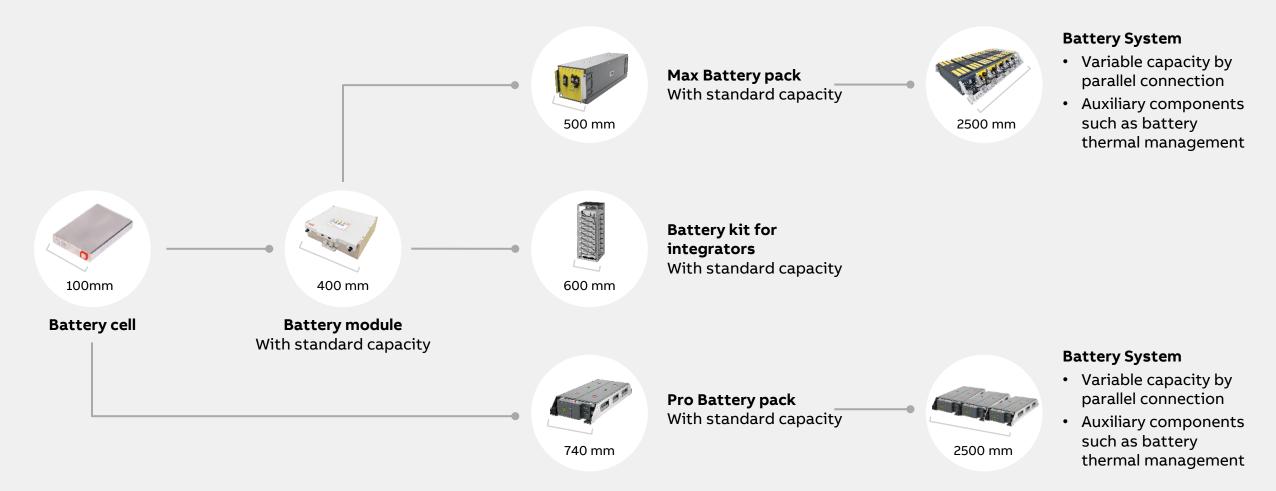


ABB Traction Battery

Michael Zanetti, MSc ME ETH Project Manager Automation




Semiautomated Battery Production Baden (CH)

ESS Baden | Movie source

Traction Batteries

Flexible engineering based on standardized modules and packs

ABB Traction Battery Selected Success Stories

Railway

Newbuild – Battery only regional train

Most economical solution in partially electrified networks

Railway

Retrofit – Hybrid diesel electric drive train retrofitted with a battery

Up to 35% efficiency improvement, reduced local emissions and reduced maintenance

Stationary

Peak shaving and recuperation for a cable car

Integration of PV generation and reduction of grid charges

Mining

Newbuild – full electric / hydrogen / hybrid dump trucks

Long cycle stability under harshest conditions

Mining

Retrofit – zero emission dump truck

Proof of concept for the conversion of a diesel mechanic truck, and proof of concept of 100% regenerative operation

Bus

Newbuild – full electric bus and trolleys

Range extension, catenary-based trickle charging, opportunity and flash charging

High Density Traction Battery

Pro Series

Safe

Highest safety By design and cell selection

Flexible

Multi-pack paralleling

To adapt capacity

80%

Rapid charging Charging in less than 10 min

>20.000

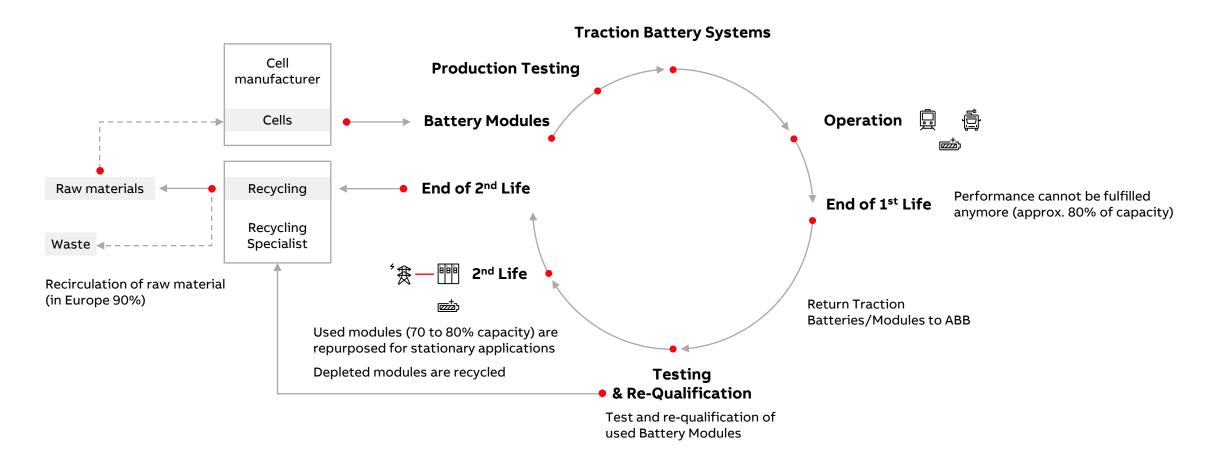
Long life Over 20.000 cycles

 \bigcirc

Plug & play

Easy connectivity Simple installation

Wide temperature operation Excellent performance



Configurable interfaces For all installation needs

Battery Life Cycle

From production till end of life, Service Concept, recycling concept & potential 2nd Life Concept

Fully Automated Laser Welding

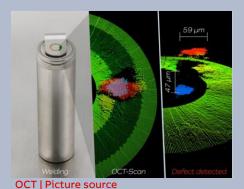
Pro Series Battery Packs

Pro Series

- Each Pro Pack includes 24 modules
- Each module requires 64 weld seams totaling up to 1,536 seams per Pro Pack
- Cycle time under 2 minutes per module, including integrated automated Weld Seam Inspection (WSI)

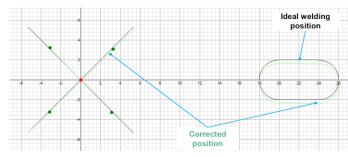
Why Technology for Weld Seam Inspection (WSI) is Needed

	Current Challenges	Possible Solution with Automated WSI
Real-Time Monitoring	Existing measuring equipment does not provide reliable and continuous measurement during the welding process.	Pre-, in-, and post-process monitoring with high accuracy and independent measurement systems.
Quality Control	Visual inspection after welding is subjective and highly dependent on the auditor.	Independent measurements allow objective evaluation, enabling earlier detection of defects.
Testing Time	Each weld must be visually inspected after the welding process, consuming significant time.	In-situ measurement and real-time evaluation streamline the process.
Sustainability	Faulty welds are often identified late in the process, resulting in unnecessary material waste and production time.	Early detection allows for adjustments before or during welding, significantly reducing material waste and costs.


Laser Welding Monitoring (LWM)

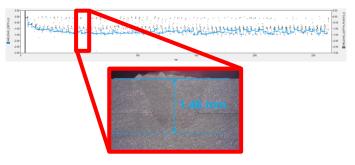
Analysed Technologies for Automated Production

	<u>Advantages</u>	<u>Challenges</u>	Potential
Optical Coherence Tomography (OCT)	 Detection of external and internal defects Pre-/In-/Post-Monitoring 	 Data processing requires significant computational power Cycle time 	
Photo Diode Measuring System (PDMS)	 Fast, real-time data collection Surface defects can be detected quickly during the welding process. Investment costs Key Holes, (Gap between layer) 	 Influenced by process light and "Schmauch" Requires calibration for a stable analysis 	
Machine Vision	 Effective surface defect detection Flexible, suitable for multiple processes. 	 Limited to surface inspection Requires large data sets for training 	

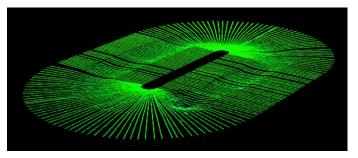

Key insights

- OCT offers the best defect detection: It identifies both external and internal flaws
- Automation-ready: All systems can support automated production, but OCT offers the most comprehensive data for process optimization.
 PDMS is fast but affected by light and limited to real-time
 - depth info. **Machine Vision** is **flexible** but only detects surface defects.

Optical Coherence Tomography (OCT)


Pre-Process

- Measures various distances to ensure correct positioning
- Centers the laser at the optimal welding point


Early defect detection: Finds surface and internal defects immediately, reducing rework and scrap

In-Process

- Measures keyhole depth to ensure proper weld penetration
- Enables immediate corrective actions to reduce rework

Post-Process

- Scans the weld surface to detect errors between the cell terminal and cell connector
- Inspects the surface for defects such as gaps, cracks, or uneven welds

High precision: Accurately measures keyhole depth and welding position with micrometer resolution.

Non-contact & safe: Uses light-based scanning, so it doesn't damage components during inspection.

