

Building An Ultrafast Photon-Induced Near-field Transmission Electron Microscope Dr. Tom T.A. Lummen École Polytechnique Fédérale de Lausanne -- LUMES Photonic Instruments 2013 – September 11, 2013 – Zürich, Switzerland

Collaborative Team

Prof. Fabrizio Carbone

Luca Piazza

Dr. Bryan W. Reed

Dr. Thomas LaGrange

Prof. Brett Barwick

Erik Quiñonez

Collaborative Team

People

Lawrence Livermore National Laboratory

Dr. Dan Masiel

Outline

- Introduction & Motivation
 - ✓ Near-field imaging: Why & How?
- Concept
 - Photon-Induced Near-field Electron Microscopy (PINEM)
- Approach and Instrumentation
 - System choice and customization
 - Setup characteristics and specifications
- Results
 - ✓ PINEM on simple systems
 - Modeling of the evanescent field
- Outlook & Perspectives
 - ✓ in-situ PINEM
 - ✓ Take-home messages

Introduction & Motivation

Integrated photonic and plasmonic circuitry:

- combine electronics and photonics
- advanced miniaturization and superior performance

The relevant scale demands the use of sub-wavelength confined light:

Near-field Imaging is required

Introduction

Y. Oshikane et al., Sci. and Technol. Adv. Mat. 8, 181 (2007)

How to overcome these limitations?

D.W. Pohl et al., Applied Physics Letters 44, 651 (1984)

Illumination

Introduction & Motivation

Scanning Near-field Optical Microscopy (SNOM/NSOM)

- Scanning probe microscopy
- Probe proximity to sample >> λ
- Different probe types

Limitations

- spatial resolution (~20 nm)
- point-by-point probing
- long acquisition times
- time-resolution

Motivation

Concept

Use electrons instead of photons to probe

Photon-Induced Near-field Electron Microscopy (PINEM)

B. Barwick et al., Nature 462, 902 (2009)

Pump-probe TEM technique:

- fs optical pump
- fs electron probe

Energy exchange:

- electrons gain/lose photon energy quanta
- structure-mediated

Concept

Energy-filtering of electrons allows for direct visualization of the near-field

Image using only inelastically scattered electrons

Carbon nanotubes

Bright-field and PINEM of protein vesicles

Protein Vesicles

E. Coli Bright-field and PINEM images of whole unstained, unfixed *E. coli*

D. Flannigan et al., PNAS 107, 9933 (2010)

B. Barwick et al., Nature 462, 902 (2009)

field-of-view technique sub-nm spatial resolution ultrafast time-resolution

Concept

PINEM

Until very recently, only one working ultrafast electron microscope in the world:

 UEM system in laboratory of Prof. Ahmed Zewail (California Institute of Technology)

EPFL – LUMES:

Build first working ultrafast electron microscope in Europe

Implementation: modified Transmission Electron Microscope

 Optical port for specimen excitation (LLNL/IDES customization)

Approach

- Optical port for photo-electron generation (LLNL/IDES customization)
- Electron Energy Loss Spectrometer with energy filter for PINEM (GATAN Quantum GIF electron energy loss spectrometer)

• Modified 200 keV Jeol JEM-2100

Amplified Ti:sapphire laser system

Optimal conditions for time-resolved experiments:

- (1) emit only few electrons from the tip
- (2) couple all of them down the column

(1) Wehnelt electrode:

- convergent electrostatic lens with static bias
- Used to tune electron emission from source

 \odot

 $oldsymbol{O}$

zero wehnelt voltage

medium wehnelt voltage

high wehnelt voltage

(2) C0 lens:

- Extra convergent magnetic lens (refurbished C1 lens)
- Couples majority of emitted electrons to imaging system
- Greatly improves brightness

Depending on dynamic experiment:

Quantities to optimize:

- Electron beam coherence (spatial resolution)
- Electron energy spread (energy resolution)
- Electron pulse duration (time resolution)
- Electron counts

Parameters to tune (trade-offs):

- Wehnelt bias
- Laser pulse duration
- UV fluence
- Integration time

Crucial control over space charge effects

Optimization

Instrumentation

Images of the source

Depending on dynamic experiment:

Quantities to optimize:

- Electron beam coherence (spatial resolution)
- Electron energy spread (energy resolution)
- Electron pulse duration (time resolution)
- Electron counts

Parameters to tune (trade-offs):

- Wehnelt bias
- Laser pulse duration
- UV fluence
- Integration time

Crucial control over space charge effects

Typically, the system can achieve:

- Spatial resolution ≈ 1 nm
- Energy resolution ≈ 1 eV
- Time resolution ≈ 400 fs

L. Piazza et al., Chemical Physics 423, 79 (2013)

Instrumentation

Time-resolved Electron Energy Loss Spectroscopy (EELS)

Silver nanowires (≈100 nm diameter, ≈5 µm length)

Energy exchange of over 30 photon quanta

Results

Time-scan shows cross-correlation of electron and photon pulses

Photon-Induced Near-field Electron Microscopy

Silver nanowires (≈100 nm diameter, ≈5 µm length)

Energy filtered imaging

Polarization dependence of excitation pulse

Experimental data Silver wire, suspended on a thin SiN film

Results

Numerical Simulation Silver wire, suspended in air

COMSOL Multiphysics® simulation

Excellent match between experiment and simulation

Polarization dependence: numerical simulation

Numerical Simulation Silver wire, suspended in air

COMSOL Multiphysics® simulation

Continuous evolution of evanescent field with polarization

Results

PINEM: near-field interactions

Silver wire, hanging off a TEM grid

Interaction between nanowires influences the induced evanescent field

Results

Outlook

PINEM: time-resolution

Conventional PINEM:

- Essentially a cross-correlation of the electron and optical pulses
 - Pump pulse spot size >> imaged area → uniform excitation

Outlook

Outlook

PINEM: time-resolution

In-situ **PINEM**:

- In-situ coupling of optical pump beam
 - Focused spot size <<
 imaged area
 - \rightarrow <u>local</u> excitation
- Time-resolved observation of traveling evanescent waves

Outlook

Perspectives

- First ultrafast electron microscope in Europe (operational since early 2013)
- Capable of time-resolved EELS and PINEM (in addition TEM, diffraction and Lorentz TEM)
- 400 fs time resolution
- 1 eV energy resolution

Perspectives

- Sub-nm spatial resolution
- In-situ PINEM in development
- Open to collaborations (science, samples, devices)

Contact:

Dr. Tom T.A. Lummen EPFL – LUMES tom.lummen@epfl.ch

-

Thank you!

• Caltech UEM-2 system

Ultrafast Electron Energy Loss Spectroscopy

• Caltech UEM-2 system

B. Barwick et al., Science 332, 1227 (2008)

• Modified Jeol JEM-2100

Optical Coupling

L. Piazza et al., Chemical Physics 423, 79 (2013)

Instrumentation

• Effect on static TEM

L. Piazza et al., Chemical Physics 423, 79 (2013)

Slight blurring at image edge

- Lattice fringes observed
- Reasonable atomic resolution even after modifications

Introduction

Depending on dynamic experiment:

Quantities to optimize:

• Electron beam coherence (spatial resolution)

PINEM amplitude (A.U.)

e'llaser cross corr. (ps)

Time-resolution

2

- Electron energy spread (energy resolution)
- Electron pulse duration (time resolution)
- Electron counts

Parameters to tune (trade-offs):

- Wehnelt bias
- Laser pulse duration
- UV fluence
- Integration time

Crucial control over space charge effects

Instrumentation

Polarization dependence: numerical simulation

Numerical Simulation Silver wire, suspended in air

COMSOL Multiphysics® simulation

Continuous evolution of evanescent field with polarization

Results

