Integrated photonics for quantum: when every photon counts

Anton Stroganov 2025

European PIC manufacturing company with a global reach LIGENTEC key facts

LIGENTEC

Best-in-class Silicon Nitride integrated photonic circuits

- Low Loss SiN (down to < 1 dB/m)
- 3+ technology platforms (AN150, AN350, AN800)
- Integration with actives
- Extensive PDK

LIGENTEC

We are proud to serve leading companies and research institutions in many different domains

Applications - Quantum Showcase: Quantum Computing

LIGENTEC

Our chips served as key part of a photonic quantum computer to generate and manipulate quantum states

Photonic Quantum Computer with Ligentec PICs

 Arrazola et al., Nature (2021)
 Zhang et al., Nature Communications (2021)

 V. Vaidya et al., Sci. Advances (2020)
 K. Tan et al., Optics Letters (2020)

Introduction Potential of Photonic Integration

LIGENTEC

Why Photonic Integration?

Why in the scope of quantum?

Miniaturization: size, weight, power Lowering complexity: no discrete (moving) parts Scalability and cost

Introduction Potential of Photonic Integration - Quantum computing

LIGENTEC

Year 2021, ~several m³ IEEE Spectrum

LIGENTEC is photonic integrated circuits manufacturing provider with mature scalable technology and strong well-established network of partners within the photonic ecosystem

Mature and versatile platform with modular approach and unique expertise in thick films

1.1

1.1

11

11

1 1

1.1

SiN as a material:

Si Photonics + Wide Transparency (400-3500nm) High power handling (no TPA) Higher thermal stability Lower Loss

Thick SiN platform:

High confinement waveguides

Very low loss (down to <1 dB/m) Small footprint

+

Dispersion Engineering Access to nonlinear effects

+ Extensive PDK and component library

Integrated Photonics for Quantum Computing

LIGENTEC	-
----------	---

n	21	11	m	
	a	LU		-

https://doi.org/10.1038/s41586-025-08820-7

Accelerated Article Preview

A manufacturable platform for photonic quantum computing Article

PsiQuantum Team

Received: 30 July 2024

Accepted: 20 February 2025

Scaling and networking a modular photonic quantum computer

a. Single-gubit state preparation and measurement

https://doi.org/10.1038/s41586-024-08406-9 Received: 25 June 2024 Accepted: 14 November 2024 Published online: 22 January 2025 Check for undater

H. Aghaee Rad¹, T. Ainsworth¹, R. N. Alexander¹⁵⁹, B. Altieri¹, M. F. Askarani¹, R. Baby¹ L. Banchi¹, B. Q. Baragiola¹, J. E. Bourassa¹, R. S. Chadwick¹, I. Charania¹, H. Chen¹, M. J. Collins¹, P. Contu¹, N. D'Arcy¹, G. Dauphinais¹, R. De Prins¹, D. Deschenes¹, I. Di Luch¹, S. Duque¹, P. Edke¹, S. E. Faver¹, S. Ferracin¹, H. Ferretti¹, J. Gefaell¹, S. Glancy¹, C. González-Arciniegas¹, T. Grainge¹ Z. Han', J. Hastrup', L. G. Helt', T. Hillmann', J. Hundal', S. Izumi', T. Jaeken', M. Jonas', S. Kocsis¹, I. Krasnokutska¹, M. V. Larsen¹, P. Laskowski¹, F. Laudenbach¹, J. Lavoie¹⁵¹, M. Li¹, E. Lomonte¹, C. E. Lopetegui¹, B. Luey¹, A. P. Lund¹, C. Ma¹, L. S. Madsen¹, D. H. Mahler¹, L. Mantilla Calderón¹, M. Menotti¹, F. M. Miatto¹, B. Morrison¹, P. J. Nadkarni¹, T. Nakamura¹

Low-loss \rightarrow

 \rightarrow Mature process

(but pushing the limits!)

- **Scalability** \rightarrow
- \rightarrow **Modularity**
- **Efficient interfaces** \rightarrow

Further integration: PD / PNRD Fast modulators Amplification Other

The best of two worlds: two fabs with a different focus

LIGENTEC

R&D line: Non-Standard

Flexibility and Speed

Non-standard SiN offering

 Prototyping to mid-volume fabrication of non-standard / development SiN stacks

R&D

New concepts & technologies

Heterogeneous Integration

New materials & methods

200 mm line: Standard & Volume Maturity & Control & Capacity

Standard SiN offering

- Standard SiN stacks
- MPW runs, Pilot & niche quantities
- High volume production

Automation & Quality

- Highly automated process flow
- Fully automated testing
- IATF 16949 certified / ISO 13485 compliant

One basis, large diversity in the add-ons Materials and Functionalities

Micro-Transfer Printing: high-throughput wafer-level integration technique

LIGENTE World's first integrated val chain platform initiative f heterogeneous integration i photonics

xfab

Celeprint

Heterogeneous integration of EO modulators Wafer bonding of thin-film lithium niobate

LIGENTEC

Churaev et al., Nature Comms (2023)

Fast modulators on mature SiN platform. Scalable, wafer-level approach.

"High-performance Hybrid Lithium Niobate Electro-optic Modulators Integrated with Low-loss Silicon Nitride Waveguides on a Wafer-scale Silicon Photonics Platform": https://arxiv.org/abs/2504.00311

Heterogeneous modulators: achievable results

LIGENTEC PROPRIETARY AND CONFIDENTIAL

LIGENTEC

LIGENTEC

LIGENTEC - European open-access PIC foundry; *Clear path from prototype to volume production*

Versatile modular technology for variety of applications;

Visible to Mid-IR wavelength ranges Quantum Computing, QRNG, QKD, and many more

Activation of low-loss integrated photonics Scalable heterogeneous integration of fast modulators and photodiodes

Reliable partner at all stages; Design / Layout / Engineering assistance for your development

Integrated Photonics for quantum: when every photon counts

info@ligentec.com 2025