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Joining Technologies 

Process and service requirements 

 Fast joining at ever-lower temperatures 

 Long-term mechanical and chemical stability during operation  

 at elevated temperatures 

 under fast cyclic thermo-mechanical loading conditions. 

 in high shock and vibration environments. 

 in moisture, ionic liquids and reactive gas atmospheres (under high pressures). 

Industrial requirements 

 Joining of heat-sensitive materials and miniaturized components. 

 Extended service lifetime of joint assemblies in harsh environments. 
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Packaging for harsh environments 

Harsh environments for joint assemblies 

 Rapid thermal cyclic in the range of -40 °C up to 250 °C. 

 Operation beyond 125 °C in high shock and vibration environments. 

 Operation in moistures and ionic liquids (i.e. high corrosion resistance). 

 Operation in reactive gas atmospheres under high pressures. 

Fabricated @ Empa:  

Ion-Optical Components for ROSINA RTOF  

(University of Bern / ESA mission Rosetta) 

TLP-Bonded @ Empa : 

Thermoelectric module for exhaust applications 
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ceramics

steels

particle reinforced fillers

active Ag- and 
Cu-based fillers

Particle reinforced brazing fillers provide tuneable physical properties, which can be 

tailored to reduce thermomechanical stresses of joint assemblies during operation. 

Application of particle-reinforced brazing fillers 

for improved mechanical performance 

                           
AgCuInTi/glass (d=60μm) 

 

CuSnTiZr/SiCp (d=25μm) 

SiCp 

glass 
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Transient Liquid Phase (TLP) Bonding 

Basic Principles of the TLP process 

Common TLP systems 

High-melting-point metal 

 

Ag, Cu, Ni or Au +                  

Low-melting-point metal 

 Sn (Tm,l = 232 ºC) 

 In (Tm,l = 157 ºC) 

 

Process optimization issues 

 Relative narrow (T, t)-processing windows 

 Shrinkage porosity due to incomplete consumption of liquid Sn phase  

 Kirkendall porosity (e.g. for CuSn) 

 

Advantages of the TLP process 

 Fast joining < 250 ºC 

 Operation >> 250 ºC 
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Transient Liquid Phase (TLP) Bonding 

 Ag-Sn & Ni-Sn: 235 °C  Tprocess  300 °C 

 Ag-Sn: formation of Ag3Sn (ε) with Tm = 480°C 

 Ni-Sn: formation of Ni3Sn4 with Tm = 794.5 °C 

Example: Ag-Sn and Ni-Sn TLP bonding  

Basic Principles of the TLP process 

Advantages of the TLP process 

 Fast joining < 250 ºC 

 Operation >> 250 ºC 
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Transient Liquid Phase (TLP) Bonding 

Ag-Sn TLP bonding for power electronics 

Full IGBT module [source: Infineon] 

Si chip 

Ni3Sn4 

Ag3Sn 

Ag 

Si chip 

TLP-bonded Si chip [bonded @ Empa] 

Cross- section of Ag-Sn TLP bond 

Ni-Sn TLP bonding for automotive applications 

Thermoelectric module for exhaust 

applications 

Large-area TLP bond [bonded @ Empa ] 

ceramic 

Al2O3 

Ni3Sn4 

Ni 

3 mm 

ceramic 

steel 

Cross-section of Ni-Sn TLP bond 
40 mm 
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Mechanical Integrity of TLP Joints 

mean 60.7 7 MPa ( 0.5 Nm)M    crit,loc =70 MPa

Failure in 

Ag3Sn 

phase 

Shear strength of Ag-Sn TLP bonded Cu-Cu joints (no CTE mismatch) 

Experimental Finite-Element Modelling 



10 

Conventional brazing and soldering technologies rely on Bulk Alloy Design 

to reduce eutectic melting points, promote wetting and optimize interface bond strengths. 

Joining of diamond or c-BN for high-performance cutting tools 

Liquidus projection of the Cu-Sn-Ti diagram (by CALPHAD methods) 

Nano-Joining Technologies 

Joint assemblies in Al heat exchangers for automotive industries 
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Nano-Joining Technologies 

Nano-joining technologies are based on Nanostructured Filler Design 

to tailor pre-melting, wetting and interfacial reaction kinetics by exploiting nano-scale effects 

Research @ Empa: Fabrication and microstructural characterization of nano-mutlilayered brazing  fillers for novel low-temperature joining applications 

Interface engineering to promote interfacial pre-melting 

[source: Lu & Jin, Curr. Opin. Solid State Mater. Sci. 5 (2001) 39] 

Multi-scale modelling of defect structures and atomic mobilities at 

semi-coherent and incoherent interfaces  [Empa] 
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Ultra-thin Al-Si films sandwiched between inert AlN diffusion barriers exhibit 

size-dependent melting point depression (MPD) 

MPD@2.3nm = 220°C 

Example:  AlSi-AlN nano-fillers for low-temperature brazing of Al alloys 

 (Patent DE102008050433.5) 

Nano-Joining Technologies 

Recent references on nano-joining research @ Empa 

• Copper-Based Nanostructured Coatings for Low-Temperature Brazing Applications, Materials Transactions (2015). 

• Structural evolution of Ag-Cu nano-alloys confined between AlN nano-layers upon fast heating, Physical Chemistry Chemical Physics (2015) 

• Interfacial design for joining technologies – An historical perspective, Journal of Materials Engineering and Performance 23 (2014) 1608.  
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Advantages of reactive foil joining technologies 

 No furnace needed! 

 Fast joining at room-temperature in air or shielding gas. 

 Heat is localized to bonded interface only, thus allowing joining of heat-sensitive materials  

Combining nano-structured brazing fillers with reactive nano-foil technologies 

Reactive Nano-Foil Technologies  

EXTERNAL HEAT SOURCE 

(conventional furnace) 

INTERNAL HEAT SOURCE 

(reactive nano-foil)  

Development and application of reactive 

nano-foil technologies @ Empa 

CONVENTIONAL APPROACH NOVEL APPROACH JOINING using reactive nanofoils @ Empa 
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Reactive Nano-Foil Technologies  

nano-
Al7475 

Solder 

PREPARATION  JOINING PROCEDURE 

Example: Joining of nano-Aluminium using reactive Nano-Foil® technology 

5 mm 

JOINT 

Process characteristics 

 Ni and Al nanolayers react to form Ni3Al and/or NiAl (heat of reaction up to -52 kJ/mol). 

 Local ignition at room temperature with electrical spark, laser pulse or hot filament. 

 Self-propagating reaction front with a speed up to 30 m/s.  
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Reactive Nano-Foil Technologies  

250 microns foil 60 microns foil 

No heat affect on nano Al base material Heat affected zone < 200 μm 

Example: Joining of nano-Aluminium using reactive Nano-Foil® technology 
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In-house developed micro-capillary electrochemical setups can: 

• Compare corrosion-susceptibility of different microstructural features in joint zone. 

• Determine corrosion rate of the most susceptible microstructural feature in joint zone. 

• Identifying the underlying corrosion mechanisms in different harsh environments. 

Ref: Suter at al, Electrochim. Acta 42 (1997) 3275  

Chemical integrity of joint assemblies 
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Corrosion resistance of Cu-nanoparticle-reinforced lead-free Sn-Ag-Cu solders 

Chemical integrity of joint assemblies 

Electrochemical polarization curves, as measured with 300 nm glass-capillary filled with 1 molar NaCl solution on various phases of the Cu-particle-

reinforced lead-free Sn-Ag-Cu solder. 

 Cu particles are (slightly) active and very noble. 

 Sn-phase and Cu6Sn5 particles are more passive. 

Cu 

Conclusion: Cu nano-particles can act as local galvanic element, whereas Cu6Sn5 particles do 

not act as local galvanic element.  Cu-nanoparticles should fully react during soldering! 
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Transient Liquid Phase (TLP) Bonding 

Sn consumption 

factor 

M – molar mass 

ρ – density 

x,y – stochiometric number 

Arrhenius 

Ag-Sn Example for 7 μm Sn-foil 

 

Ag3Sn 235°C → 80 min 

 300°C → 20 min 

Ni3Sn4 235°C → 50 min 

 300°C → 10 min 
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Constructed Sn-consumption maps 
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System 

Enthalpy of 

formation 

 (kJ•mol-1) 

Energy Density 

 (kJ•cm-3) 

RT  

ductility 

Adiabatic  

reaction  

temp.(°C) 

Ref. 

Pt/Al -100 1451 - 2800 McAlister 1986 

Ni/Zr -51 1025 - Nash 1984 

Ru/Al -62 1000    Jung 1992 

Ni/Al -59 861 - 1639 
Kleppa 1994 

Huang 1998 

Co/Al -55 800 - Kleppa 1994 

Ti/Al -40 788 - 1227 Schuster 2006 

Y/Ag -27 771    Colinet 1995 

Ni/Ti -34 563    1355 

Y/Cu -19 506    Colinet 1995 

Duckham et al, J. Appl. Phys 96 (2004) 

Reactive systems Reactive Nano-Foil Technologies  


