

Applications of Adaptive Optics in Fluorescence Microscopy and Ophthalmology

Audrius JASAITIS

Imagine Optic (Orsay, France)

Application Specialist Microscopy

Imagine Optic - What we do

Leader in Optical Metrology HASO SH wavefront sensor WaveView Software

Adaptive Optics for high-power lasers ILAO Deformable Mirrors WaveTune Software

Custom-built setups AOKit Bio Single Molecule Localization MicAO 3DSR

> Spinning Disk MicAO SD

Tracking diseases at cellular and microvascular levels

rtx1-e[™] adaptive optics retinal camera

The loss of signal in fluorescence microscopy

- Scattering
- Absorption
- Optical aberrations
 - -Loss of the fluorescence signal -Loss of the resolution

The loss of signal in fluorescence microscopy

- Scattering
- Absorption
- Optical aberrations
 - -Loss of the fluorescence signal -Loss of the resolution

Adaptive optics can correct aberrations and improve the fluorescence signal

Booth (2007) Phil. Trans. R. Soc. A, 365, 2829-2843.

HeLa cells in agar

Key Components – Shack Hartman Wavefront sensor

Measure the local slopes Reconstruct the wavefront

Key Components – Phase Modulator

Spatial Light Modulator (SLM)

Aberration Correction

Segmented Deformable Mirror (MEMS)

Continuous Membrane Deformable Mirror

7

AO correction – Closed-loop optimization

Booth *et al* (2002) *PNAS*, **99**, 5788-5792.

Rueckel *et al* (2006) *PNAS*, **103**, 17137-17142.

Joel Kuby Lab: Azucena *et al* (2010) *Opt. Express.*, **18**, 17521-17532. Azucena *et al* (2011) *Opt. Lett.*, **36**, 825-827. Tao *et al* (2011) *Opt. Lett.*, **36**, 1062-1064. Tao *et al* (2011) *Opt. Lett.*, **36**, 3389-3391. Tao *et al* (2012) *Opt. Express*, **20**, 15969-15982. Tao *et al* (2013) *Opt. Lett.*, **38**, 5075-5078.

Aviles-Espinoza et al (2011) Biomed. Opt. Express., 2, 3135-3149.

AO correction – Closed-loop optimization

Requirements

Images from the camera Iterative Algorithm Phase modulator

Multiple images Bleaches the sample

Examples of Iterative algorithms

Phase Retrieval Pupil segmentation Genetic 3N

Ji *et al* (2012) *PNAS*, **109**, 22-27. Kner *et al* (2010) *Proc SPIE*, **7570**, 757006. Marsh *et al* (2003) *Opt. Express*, **11**, 1123-1130.

Booth, Wilson and Beaurepaire labs: Débarre *et al* (2009) *Opt. Lett*, **34**, 2495-2497. Olivier *et al* (2009) *Opt. Lett*, **34**, 3145-3147. Facomprez *et al* (2012) *Opt. Express*, **20**, 2598-2612.

AO correction – 3N algorithm

3N algorithm using a point source

Merit Factor = Max Intensity

3 images per mode (A- Δ a, A, A+ Δ a)

Repeat for N Modes Typically, 1st order aberrations (Astigmatism, Spherical, Coma)

 $\phi_{Zernike}(r,\theta) = \Sigma_i a_n^m Z_n^m(r,\theta)$

Requires roughly **40 images** (2 time optimization)

AO correction – Aberration Model

Requirements

Model Phase modulator Live imaging No photo-bleaching Direct Imaging Works in particular conditions
Homogeneous Samples
Partial phase correction

Booth *et al* (1998) *J. Microscopy*, **192**, 90-98. Theoretical model Depth dependence of all Zernike modes

Lenz et al (2014) J. Biophotonics, 7, 29-36.

Booth's model Spherical aberration correction

Fraisier et al (2015) J. Microscopy.

Experimental model Spherical aberration correction

MicAO – the plug & play solution for inverted-frame microscope

The main features :

- Compatible with both 60x and 100x objective lenses
- Compatible with both EMCCD and sCMOS cameras
- Optical bypass option
- Optional wavefront imager
- Can be implemented on both sides of the microscope

Can be used in:

- PALM/STORM super resolution
- Spinning Disk confocal microscopy

Imagine Coptic

100 m

PALM/STORM basics

2D

•Widefield excitation in the depth of imaging

•Each fluorophore randomly emits photons

•Fit the fluorophore determine the position

• Record a stack of thousands of images to reconstruct the sample

Localization precision by numerical fitting

5-20nm in XYZ

ajasaitis@imagine-optic.com

200nm in XY &

500nm in Z

Adaptive optics in SMLM – MicAO 3DSR

Pure Astigmatic Imaging Do not lose photons, Deep 3D imaging

Perfecting the PSF Correct common aberrations in microscopy

Optimized PSF

3D SMLM – Cylindrical lens *vs.* **Adaptive Optics**

TIRF regime : small residual aberration

Adaptive optics restores the axial symmetry of calibration curve

Localization algorithm rejects aberrated PSF

Cylindrical lens

MicAO 3DSR

Imagine Coptic

MicAO 3DSR – 50µm deep 3D STORM imaging

200nm fluorescent beads at 20µm depth

Imagine Coptic

MicAO 3DSR – 50µm deep 3D STORM imaging

200nm fluorescent beads at 20µm depth

Adaptive Optics - spinning disk microscopy

Designed for Yokogawa spinning disk device (100x, NA>1.33) Placed in **Excitation** and **Emission** path Deformable Mirror: Mirao 52e Mirror calibration with WFS : HASO4 First

High NA (oil) objectives with Live Samples : Experimental Spherical Aberration Model of Depth dependence Fraisier *et al* (2015) *J. Microscopy*.

Direct Imaging using **Aberration Model** no prior illumination 100% signal gain at 30 um depth

Adaptive Optics - spinning disk microscopy

In vivo centrosomes in Drosophila brain Fraisier et al (2015) J Microscopy

Live Sample Application

Model Correction at 7µm depth

30% fluorescence signal gain

15-25% particle detection increase

Direct Use & Easy to Interface

19

Two-photon excitation microscopy

IR Excitation Minimized scattering Higher optical penetration

Minimize Refractive index mismatch Fixed Samples : Medium associated with Clearing Technique and Objective lens Live Samples : Water/Glycerol immersion objectives

Sample induced aberrations

AO Last barrier to improve the Signal to Noise ratio

Iterative algorithms – two-photon excitation microscopy

3N Iterative Algorithm

Lower resolution phase measurement Easier Implementation - No SH path No need to modify the sample

3 images per Mode Repeat for N Modes Typically, 1st order aberrations (Astigmatism, Spherical Ab, Coma)

 $\phi_{Zernike}(r,\theta) = \Sigma_i a_n^m Z_n^m(r,\theta)$

FOV correction About 20-40 images

3N partial correction Tradeoff tradeoff

Zebra fish bone Facomprez et al, (2012) Proc SPIE

MirAO 52-e DM 15mm diameter 8um PtV Spherical Dyn 10nm surface linearity

Closed-loop – two-photon excitation microscopy

NIR Guide Star

FRAP excitation laser control ICG Injection increase GS Signal quality

To scan the Guide Star Average the WF Reduce Speckles on the SH

Low Photon Budget SH Sensor

NIR ICG photon Emission EMCCD based / small number of microlens 0.5Hz Measurement frame rate

Cranial-window Spherical Aberration correction (Surface Aberration) Wang et al (2015) Nature Communication doi10.1038

Evolve SH Sensor

50 000 photons 3um PtV Spherical Dynamic Lambda/100 accuracy

Comparison with state-of-the-art scanning laser ophthalmoscope (SLO)

SLO resolution 20 μm

Comparison with state-of-the-art scanning laser ophthalmoscope (SLO)

Magnified area : resolution 20 µm

Comparison with state-of-the-art scanning laser ophthalmoscope (SLO)

rtx1 resolution 2 μm

Comparison with state-of-the-art scanning laser ophthalmoscope (SLO) rtx1 resolution 2 μm Visual cells are visible

Comparison with a conventional color fundus camera

Resolution 20 μ m

Comparison with a conventional color fundus camera

Magnified area : resolution 20 µm

Images: courtesy of Gocho, Kameya et al., Nippon Medical School Hokusoh Hospital, Chiba, Japan

Comparison with a conventional color fundus camera

Comparison with a conventional color fundus camera

rtx1 resolution 2 μm Arteriolar walls are visible

rtx1-e main technical data

Criteria	Specifications
Resolving power	250 line pairs /mm *
Image field	4 deg x 4 deg
Reachable field	29 deg x 20 deg rectangular field
Exposure time for a single image	< 10 ms
Acquisition time for an averaged image	2 s
Illumination wavelength	850 nm

Geographic atrophy in dry AMD

- The rtx1 can detect atrophic progression in very short times
- It reveals the **migration** of numerous pigmented cells, previously unseen

5-month follow-up of an atrophic area Progression detected in 2 weeks

Recovery of arteriolar wall structure after anti-hypertensive treatment

T=0, WLR=0.33

T=5 weeks, WLR=0.25

Thank you and greeting from Imagine Team

