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CU-BNL: Outcomes from LCA research 

• Original, data-based LCA on current & emerging PV technologies  
– CdTe PV 

– High-efficiency mono-crystalline PV 

– High Concentration PV (Si and III/V) 

– GIGS PV 

– Advanced  c-Si PV 

– Organic PV 

• Corrected misrepresentations of PV environmental profiles 
– Emissions 

– Energy Payback Times–Energy Return on Investment 

– Land use 

– Risks  

• Addressing sustainability of large-scale deployment 
– Materials availability 

– Recycling technologies 

– PV variability –Grid integration  

• Effective Dissemination of research results 
– Bibliography of  300 articles, ~60 on LCA    

– www.bnl.gov/pv     www.clca.columbia.edu 
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Large Scale PV –Sustainability Criteria  

 
Low Cost 

Resource 
Availability 

Lowest  
Environmental Impact 

 Affordability in a 

competitive world 

 

Te  in CdTe  

In  in CIGS  

Ge  in a-SiGe & III/V 

Ag  in c-Si 

Lower than 
alternatives Life 
Cycle Impacts & 
Risks 

 

Zweibel, Mason & Fthenakis, A Solar Grand Plan, Scientific American, 2008 

Fthenakis, Mason & Zweibel, The technical, geographical and economic feasibility for solar energy in the US, Energy Policy, 2009 

Fthenakis, The sustainability of thin-film PV, Renewable & Sustainable Energy Reviews, 2009 

Fthenakis, Sustainability metrics for extending thin-film PV to terawatt levels. MRS Bulletin, 2012.  
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Large Scale PV –Sustainability Criteria: 
Focus on CdTe PV  

 
Low Cost 

Resource 
Availability 

Lowest  
Environmental Impact 

 Lowest 

production cost 

 

Concerns about Te 

availability Concerns about 
Cd emissions 

 

Zweibel, Mason & Fthenakis, A Solar Grand Plan, Scientific American, 2008 

Fthenakis, Mason & Zweibel, The technical, geographical and economic feasibility for solar energy in the US, Energy Policy, 2009 

Fthenakis, The sustainability of thin-film PV, Renewable & Sustainable Energy Reviews, 2009 

Fthenakis, Sustainability metrics for extending thin-film PV to terawatt levels. MRS Bulletin, 2012.  
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A Solar Grand Plan  

Energy Policy 37 (2009) 

By 2050 solar power could 
provide 69% of electricity & 35% 
of total energy demand in the  
U.S. Sci. American, January 2008 

. 
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Affordability: Projected PV Growth and 
Electricity Price Targets 

Source: Solar Technologies Program, US-DOE, 25th EUPV, Valencia, Spain, Sept. 2010 

Geographic Locations 
     Phoenix, AZ 

     Kansas City, MO 

     New York, NY 

 

Financing Conditions 
    Low: 8.2%  

    High: 9.9% 
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Life Cycle Analysis 
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Comparative Life-Cycle Analysis Metrics 

 Energy  Payback Times (EPBT) and  

    Energy Return on Investment (EROI)  

 Greenhouse Gas Emissions 

 Toxic Emissions 

 Resource  Use (materials, water, land) 

 EH&S Risks 

 

Zero impact technology does not exist   

Compare with other energy producing technologies as 
benchmarks 
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Energy Payback Times (EPBT) 
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- Fthenakis et al., EUPV, 2009  
- deWild 2009,  EUPV, 2009 

- Alsema & de Wild, Material Research Society, Symposium, 895, 73,  2006   

- deWild & Alsema, Material Research Society, Symposium, 895, 59,  2006   

- Fthenakis & Kim, Material Research Society, Symposium, 895, 83,  2006   

- Fthenakis & Alsema,  Progress in Photovoltaics, 14,  275, 2006 

 

 

Based on data from 13 US and European PV manufacturers 
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EPBT Historical Evolution 

EPBT (years) 

BNL-CU collaborative studies 

Fthenakis, PV Energy ROI Tracks Efficiency Gains, Solar Today, 2012 

Irradiation of 1700 and 2400 kWh/m2/yr 
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Greenhouse Gas (GHG) Emissions 
Insolation: 1700 kWh/m2-yr 
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- Alsema & deWild, Material Research Society, Symposium, 895, 73,  2006   

- deWild & Alsema, Material Research Society, Symposium, 895, 59,  2006   

- Fthenakis & Kim, Material Research Society, Symposium, 895, 83,  2006   

- Fthenakis & Alsema,  Progress in Photovoltaics, 14,  275, 2006 
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GHG Emissions from Life Cycle of Electricity 
Production: Comparisons 
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Fthenakis, California Energy Commission, Nuclear Issues Workshop, June 2007  

Fthenakis & Kim, Life Cycle Emissions…, Energy Policy, 35, 2549, 2007 

Fthenakis & Kim, ES&T, 42, 2168, 2008 
 

 

 
 

10.9%               13.2%     
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Life-cycle Toxic Emissions 

Fthenakis, Kim and Alsema, Environmental Science & Technology, 2008 

Case 1- 2006 electricity mixture in Si production-Crystal Clear project;  

Case 2- UCTE grid mixture & EcoInvent database;  

Case 3- US grid mixture & Franklin database.  
Ground-mounted, Southern European insolation, 1700 kWh/m2/yr, performance ratio =0.8, lifetime=30 years 
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Life-Cycle Cd Atmospheric Emissions 
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 Fthenakis and Kim, Thin-Solid Films, 515(15), 5961, 2007 

 Fthenakis, Kim & Alsema, Environ. Sci. Technol, 42, 2168, 2008 
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Life-Cycle Cd Atmospheric Emissions 
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Simulations of Accidental Releases during Fires 

Heat 

Based on protocols by the ASTM and UL 

Expert Peer Reviews by: BNL, US-DOE, 2004;  EC-JRC, 2004 

German Ministry of the Environment,  (BMU), 2005 

French Ministry of Ecology, Energy, 2009 

 

 

• Weight Loss Measurements 

• ICP Analysis of Cd & Te Emissions 

• ICP Analysis of Cd & Te in Molten Glass 

• X-ray Fluorescence Micro-Spectrometry of Cd in 

Molten Glass 
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Fthenakis, Renewable and Sustainable Energy Reviews, 2004  
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XRF-micro-probe -Cd distribution in PV sample 
760 °C, Section taken from middle of sample 
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XRF-micro-probe -Cd distribution in PV sample 

1000 °C, Section taken from middle of sample  
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XRF-micro-probing -Cd distribution in PV sample 

1000 °C, Section taken from right side of sample  
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XRF-micro-probing -Cd distribution in PV sample 
1100 °C, Section taken from middle of sample 
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Direct Atmospheric Cd Emissions from the Life-
Cycle of CdTe PV Modules –Reference Case 

Process (g Cd/ton Cd*) (% ) (mg Cd/GWh)

1. Mining of Zn ores 2.7 0.58 0.02

2.  Zn Smelting/Refining 40 0.58 0.30

3. Cd purification 6 100 7.79

4. CdTe Production 6 100 7.79

5. CdTe PV Manufacturing 0.4* 100  0.52*

6. CdTe PV Operation 0.05 100 0.06

7. CdTe PV Recycling 0.1* 100  0.13*

TOTAL EMISSIONS 16.55

Fthenakis V. Renewable and Sustainable Energy Reviews, 8, 303-334, 2004 

 

* 2009 updates 
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Cd Use  in CdTe PV Production 

Cd is produced as a byproduct of Zn production  
    and can either be put to beneficial uses or discharged 

into the environment  
 
 Above statement is supported by: 

• US Bureau of Mines reports 
 

• Rhine Basin study (the largest application of Systems 
Analysis on Industrial Metabolism) 

  
 

 
 
 Liewellyn T. Cadmium , Bureau of Mines Information Circular 1994, US Department of the Interior. 
 Plachy J., U.S. Geological Survey Minerals Yearbook—2001, Cadmium—Chapter 17. 
 Stigliani W, Anderberg S. Chapter 7. In: Ayres R, Simonis U, editors. Industrial metabolism. 
       Tokyo, Japan: The United Nations University Press; 1994. 
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Cd Flow in the Rhine Basin 

Source: Stigliani & Anderberg, Chapter 7, Industrial Metabolism, The UN University, 1994 
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Rhine Basin: Cd Banning Scenario 

Source: Stigliani & Anderberg, Chapter 7, Industrial Metabolism, The UN University, 1994 
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Cd Use & Disposal in the Rhine Basin:  
The effect of banning Cd products 

“ So, the ultimate effect of banning Cd products and recycling 
50% of disposed consumer batteries may be to shift the 
pollution load from the product disposal phase to the Zn/Cd 
production phase. This … indicates that if such a ban were to 
be implemented, special provisions would have to be made for 
the safe handling of surplus Cd wastes generated at the Zn 
refineries! 

 One possible option would be to allow the production and 
use of Cd-containing products with inherently low 
availability for leaching.   

 

The other option, depositing the Cd-containing wastes in safely 
contained landfills, has other risks ” 

 
 
Source: Stigliani & Anderberg, Chapter 7, Industrial Metabolism,  
          The United Nations University, 1994 
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Recycling of Spent Modules 

 Resolves environmental issues related to end-of-life  

 Provides a source of materials  

Low Cost 

Resource 
Availability 

Lowest  
Environmental 
Impact 

Recycling 



28 

Recycling R&D at BNL: CdTe PV Modules 
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Fthenakis V. and Wang W., Separating Te from Cd Waste Patent No 7,731,920, June 8, 2010 

Wang W. and Fthenakis V.M. Kinetics Study on Separation of Cadmium from Tellurium in Acidic Solution Media Using Cation Exchange Resin, 

Journal of Hazardous Materials, B125, 80-88, 2005  

Fthenakis V.M and Wang W., Extraction and Separation of Cd and Te from Cadmium Telluride Photovoltaic Manufacturing Scrap, Progress in 

Photovoltaics, 14:363-371, 2006.  
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Studies of Te Availability for CdTe PV 
 Green M., Improved estimates of Te and Se availability from Cu anode slimes and recent price trends, 

Progress in Photovoltaics, 14(8), 743-751, 2006. 
 

 Green M. , Estimates of Te and In prices from direct mining of known ores, Progress in Photovoltaics, 
17(5), 347-359, 2009 
 

 Fthenakis V.M., Sustainability of photovoltaics: The case for thin-film solar cells, Renewable and 
Sustainable Energy Reviews, 13, 2746-2750, 2009. 
 

 Zweibel K., The impact of Te supply on CdTe PV, Science, 328, 699, 2010  
 

 Green M.,  PV Velocity Forum: Supply and Economics in Thin-film PV Materials, IEEE PVSC, Hawaii, 
June 23, 2010 
 

 Fthenakis V.,  PV Velocity Forum: Supply and Economics in Thin-film PV Materials, IEEE PVSC, 
Hawaii, June 23, 2010 
 

 Fthenakis V., Sustainability metrics for extending thin-film photovoltaics to terawatt levels. MRS 
Bulletin, 37(4), 425-430, 2012 
 

 Marwede M., Reller A., Future recycling flows of Te from CdTe Pv waste, Resources, Conservation 
and Recycling, 69, 35-49, 2012 
 

 Woodhouse  M., et. al., Perspectives on the pathways for  CdTe PV module manufacturers to address 
expected increase in the price of Te,  IEEEPV Journal, 2012 
 

 Houari Y., Speirs J., Candelise C., Gross R., A system dynamic model of Te availability for CdTe 
PV, Progress in Photovoltaics,  2013. 
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Te from Copper Sulfide ores* 
Approximate Global Distribution in Copper Circuits 
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Numbers refer to kg of Tellurium: 

*Cu, Cu-Mo, Cu-Au & polymetallic ores, e.g., Pb-Cu-Zn-Ag ores 

 Ojebuoboh, Proceedings EMC, 2007; Nagaraj, 2010; Fthenakis update 2010 
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Fthenakis V., Renewable & Sustainable Energy Reviews 13, 2746, 2009 

Fthenakis V., MRS Bulletin, 37, 425, 2012 
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Te  Utilization in thin-film PV 
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-7 Loss in purification & 
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Fthenakis V., Renewable & Sustainable Energy Reviews 13, 2746, 2009 
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  Te Needs in CdTe  PV 

 

2010 

Expected 

2020 

PV 

 

Metal Required 

(MT/GW) 

 

Required 

(MT/GW) 

 

CdTe 

 

Te 106 38-74 

Fthenakis V., Renewable & Sustainable Energy Reviews 13, 2746, 2009 

Fthenakis V., MRS Bulletin, 37, 425, 2012 
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CdTe PV Production Constraints  

Annual (GW/yr) 

Most likely 

Optimistic 

Conservative 

Most likely 

Optimistic 

Fthenakis V., Renewable & Sustainable Energy Reviews 13, 2746, 2009 

Fthenakis V., MRS Bulletin, 37, 425, 2012 

Cumulative (TW) 
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Most likely 

Conservative 

Production can 

increase with 

direct mining 

starting at ~2015  
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 Major PV Sustainability metrics include  cost, resource availability, and 

environmental impacts. 
 

 These three aspects are closely related; recycling spent modules will 

become increasingly important in resolving cost, resource, and 

environmental constraints to large scales of sustainable growth. 
 

 Environmental sustainability should be examined in a holistic, life cycle, 

comparative framework.  
 Examples: Land use comparisons between coal and PV; Cd emission 

comparisons between coal and various PV technologies; risk comparisons 

among power life cycles 
 

 Every PV technology has some EHS issues, but the industry is proactive in 

controlling them. 
 

 The environmental issues related to CdTe PV are outweighed by the 

environmental benefits that PV displacement of fossil would generate. 

 

 

 email: vmf5@columbia.edu 

www.clca.columbia.edu 

www.pv.bnl.gov 

Conclusion 
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CdTe PV Product Life  –Accidental Releases 

 Leaching from shuttered modules  
• 10 mm fragments -Rain-worst-case scenario- “ leached Cd concentration in the 

collected water is no higher than the German drinking water concentration.” 

(Steinberger, Frauhoffer Institute Solid State Technology, Progress in Photovoltaics, 1998) 

 

• < 4 mm fragments “Leached Cd exceeds the limits for disposal in inert landfill but 

is lower than limits for ordinary landfills” 

    (Okkenhaug, Norgegian Geotechnical Institute,  Report, 2010) 

 

• < 2 mm fragments “CdTe PV sample failed California TTLC and STLC tests”  

(Sierra Analytical Labs for the “Non-Toxic Solar Alliance”, 2010) 

 All PV modules would fail the California tests  

 

c-Si for Ag, Pb, and Cu (ribbon),  

CIGS for Se; a-Si marginally for Ag 

 
Eberspacher & Fthenakis, 26th IEEEPVSC, 1997; 

Eberspacher 1998 

We advocate for all PV modules to be 

recycled at the end of their life 
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 Year Extraction Efficiency (%) 
 

  Tellurium Selenium Indium 

2002 33   52   30 

2006 
 

40   80   70-80 

2009 45   80    80 

Main reason for lower Te than Se recovery rates 

• Several refineries recover Se but not Te 

 

Extraction Efficiencies from Slimes for Te, Se and In 

 Anderson 2002; USGS 2004, 2006; Ogebuoboh, 2007; 

Fthenakis update 2010 
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Land Use in Energy Life Cycles 

12000 

13000 

Fthenakis and Kim, Renewable and Sustainable Energy Reviews (2009);   

Burkhardt et al (2011) 

 

Rawl, WV Springerville, AZ 
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Corrected Misrepresentations of PV Environmental Profiles  
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Corrected Misrepresentations of PV Environmental Profiles  
 

0.03 

0.34 0.17 0.08 

0.05 

ExternE: Environmental Damage Costs  PV Risks 

Fthenakis V.M. and Alsema E., Photovoltaics Energy 

Payback Times, Greenhouse Gas Emissions and External 

Costs: 2004-early 2005 Status, Progress in Photovoltaics 

Research and Applications, 14:275-280, 2006 

2 

Fthenakis V.M., Colli A., Arellano A., Kirchsteiger C., Ale B.  

Evaluation of Photovoltaics in a Comparative Context,  

Proceedings 21st European PV Solar Energy Conference,  

Dresden, Germany, 4-8 September 2006 


