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Object detection
Sliding window

• Applies a binary classifier at every image position and scale
• Detection transformed into an iterated binary classification
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Linear object detector
Learning a Classifier
The core component of this approach is a binary classifier trained
from data.

Many algorithms fit the bill

• Boosting
• Random forests (of decision trees)
• Support-Vector machines (SVMs)
• Multi-layer perceptrons and “deep” convolution networks

We will focuse on SVMs in the rest of this presentation.
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SVM, HOG, AND DPM



Linear object detector
Invariant features (HOG)

Pedestrian template
Bicycle template

Objects are image positions on the HOG grid: scorew(x) = 〈w, x〉,
where x is the vector of features extracted from the subwindow at
the position of interest of size same as w.
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Deformable Part Model

The combination of HOG and a linear SVM is a powerful detector.

It is also the building brick of the “Deformable part model”.
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Deformable Part Model
Root detection

S0 =
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Deformable Part Model
Part detection

S1 = T1(S1) =
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Deformable Part Model
Part detection

S2 = T2(S2) =
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Deformable Part Model
Part detection

S3 = T3(S3) =
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Deformable Part Model
Final score

+ + + +

+ + + +

=
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COMPUTATIONAL CHALLENGE



Cost of linear filters
Challenge

=

K fe
ature planes

The HOG features can be seen as organized in planes, containing
distinct features from each grid cell.
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Cost of linear filters
Challenge

Typical settings uses 6mixtures × 9 parts = 54 linear filters per
object class.

For the standard PASCAL data-set, we have to detect 20 different
classes, which correspond to a reasonable practical situation (car,
pedestrian, bicycle, dog, etc.)
Total of 1080 filters and each filter is over 32 feature channels!
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Cost of linear filters
Challenge

L = 1080 filters
K = 32 feat.

R
≈

50
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32
fea
t.

KLR ≈ 1.7M
convolutions!
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FFT AND MAKING THINGS WORK



Cost of linear filters
Standard convolution process

Per image (R)

Per filter (L)

Per image x filter (LR)
...

...

HOG

HOG

HOG

x3 (rgb) x32 (K)

x32 (K)

...

score

x32 (K)

Filter

ImageImage

Per−feature Detection

score
*

+

The computational cost to convolve a HOG image of size M × N
with L filters of size P × Q across K features is:

Cstd = O(KLMNPQ)
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Cost of linear filters
Fourier based convolutions

Per image (R)

Per filter (L)

Per image x filter (LR)

...

...

HOG

HOG

FT

FT

...

...

HOG

HOG

HOG

x3 (rgb) x32 (K) x32

x32 (K)
x32 (K)

...

score score
x

Filter Filter

Image ImageImage

Per−featurePer−feature Detection

score

FT +

x32 (K) x32 (K)

The computational cost to convolve a HOG image of size M × N
with L filters of size P × Q across K features is:

CFFT = O(KMN log MN)︸ ︷︷ ︸
Forward FFTs

+ O(KLMN)︸ ︷︷ ︸
Multiplications

+O(KLMN log MN)︸ ︷︷ ︸
Inverse FFTs
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FT

score

Detection
+

Linearity

The computational cost to convolve a HOG image of size M × N
with L filters of size P × Q across K features is:

Copt = O(KMN log MN)︸ ︷︷ ︸
Forward FFTs

+ O(KLMN)︸ ︷︷ ︸
Multiplications

+O(��@@KLMN log MN)︸ ︷︷ ︸
Inverse FFTs

≈ O(KLMN)
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Cost of linear filters
What are typical numbers

• K = 32 (number of HOG features)
• L = 54 (number of filters)
• M × N = 64× 64 (size of the pyramid level)
• P × Q = 6× 6 (size of the filters)

Cstd ≈ 2KLMNPQ ≈ 490 MFlop
CFFT ≈ 3KLMN + 2.5(K + KL)MN log2 MN ≈ 230 MFlop
Copt ≈ 4KLMN + 2.5(K + L)MN log2 MN ≈ 37 MFlop

A gain by a factor 13 compared to the standard pro-
cess, and 6 compared to the standard Fourier one!
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Cost of linear filters
Patchworks of pyramid scales

To use the FFT the image and the filter need to be of the same size.

(b)(a) (c)

Memory inefficient

(b)(a) (c)

Computationally
inefficient

(b)(a) (c)

Best of both worlds
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Cost of linear filters
Cache violations

L filters
R
pa
tch
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Cost of linear filters
Cache violations

L filters
R
pa
tch
wo
rks

Read 2LR into cache⇒ compute LR.
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Cost of linear filters
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L filters
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Read (L + R) ε
L+R = ε into cache

⇒ compute LR ε
L+R .
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Cost of linear filters
Results

Table: Pascal VOC 2007 challenge convolution time and speedup
aero bike bird boat bottle bus car cat chair cow table

V4 (ms) 409 437 403 414 366 439 352 432 417 429 450
Ours (ms) 55 56 53 56 57 56 54 56 56 57 57
Speedup (x) 7.4 7.8 7.6 7.4 6.4 7.9 6.5 7.7 7.5 7.5 8.0

dog horse mbike person plant sheep sofa train tv mean
V4 (ms) 445 439 429 379 358 351 425 458 433 413
Ours (ms) 57 59 57 54 54 55 57 58 55 56
Speedup (x) 7.8 7.5 7.6 7.0 6.6 6.4 7.4 7.9 7.9 7.4

• Error rate: identical to the baseline (32.3% AP)
• Numerical accuracy: better than the baseline (1.8 · 10−8 vs.

2.4 · 10−8 MAE)
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Conclusion

• Part-based models obtain state-of-the-art performance
at the price of a huge number of convolutions

• The FT is linear, enabling one to do the addition of the
convolutions across feature planes in Fourier space

• The computational cost becomes invariant to the filters’
sizes, resulting in a big speedup (×7.4 in experiments)
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The end
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