

DETERMINATION OF ADHESION AND MECHANICAL PROPERTIES OF OPTICAL COATINGS BY NANOSCRATCH AND NANOINDENTATION

Jiri Nohava¹, Cecilia Agustin-Sanchez², Marta Brizuela²

¹Anton Paar, Corcelles, Switzerland ²Tecnalia, Donostia-San Sebastian, Spain

Mechanical properties of optical film: external contact

Anton Paar

Optical coatings are not primarily wear and scratch resistant

 Typical optical coatings (Mo, Si, TiO₂, SiO_x, MgF₂) have rather low hardness and wear resistance

But optical components are in contact with hard materials

- Mechanical damage will deteriorate the optical properties³
- The coating can delaminate

The hard layer or the protection must have⁴

- High hardness
- High scratch resistance
- Do not interfere with optical properties

³Price, James et al. "Nanoindentation Hardness and Practical Scratch Resistance in Mechanically Tunable Anti-Reflection Coatings." *Coatings* 11 (February 2021). ⁴Paulson, Charles A. et al. "Industrial-Grade Anti-Reflection Coatings with Extreme Scratch Resistance." *Optics Letters* 44, no. 24 (December 15, 2019): 5977–80.

Challenge: optical coatings are thin

Typical thickness of optical coatings - related to wavelength

- Tens and hundreds of nanometers
- Often multilayers

How can we measure their hardness and scratch resistance – or even adhesion?

- Nanoindentation: using low forces and depth profiling
- Nanoscratch: scratch at low forces with optical or SEM analysis

Nanoindentation

Hardness and elastic modulus of thin films

- We applied force and we measure indentation depth
- Hardness and Elastic Modulus are calculated from the force-displacement curve
- Anton Paar: surface referencing for increased thermal stability and elimination of frame compliance
- Lowest indentation depths down to ~5 nm
- Standardized hardness and elastic modulus calculations (ISO 14577)

Nanoscratch testing

For determination of scratch resistance and adhesion

Cohesion/adhesion by critical load events from optical observation

Anton Paar

Case study: AR coating on glass cover for photovoltaics

- Glass increases stiffness of the PV cells
- Protects the cells against mechanical damage
- Wear and damage from impacts of dust, rain and sand
- Scratching by hard particles but relatively low force
 - Glass is coated with antireflective coating
 - Large panels: sol-gel deposition method
 - Thickness of the coating: ~120 nm

Characterization – nanoscratch & nanoindentation

Scratch tests by Nanoscratch Tester (NST)

- Low load thin films
- 2 µm radius spherical diamond indenter

Berkovich diamond indenter

Active surface reference

Spherical diamond indenter

Glass with AR coating

Hardness and elastic modulus by UNHT

- Berkovich indenter (diamond)
- Force 10 μN up to 50 μN

Results – scratch test

Panorama image of the scratch track

Dense, sintered at 550°C	· •		
and the second		1	
	· · · · ·		4

Scratch: comparison of critical loads

Atomic force microscope (AFM)

tecna

Conclusion – adhesion

- Nanoscratch can determine quickly the adhesion of thin AR films

nspiring Business

Nanoindentation

Thin films (~100 nm) \Rightarrow low indentation depths & loads

- F_{max} 20 μ N,
- Maximum depth 10 nm to 20 nm

Indentation & scratch test results: comparison

Indentation

Scratch

Correlation - harder films have better adhesion

Not a rule - but this is why we measure it

Sapphire coated Gorilla glass: nanoscratch

- Thin wear resistant film ~120 nm
- Critical load determined by integrated optical microscope
- Analysis of other signals (coefficient of friction) 'support' the optical analysis

Typical data acquired during a progressive scratch with panorama image **Red curve**: Coefficient of friction (CoF)

Nanoscratch is just the beginning

microscope

Scanning Electron Microscope (SEM)

SEM Observations - more detailed info about the film failure

- Critical load Lc1: Transition from AR layer \rightarrow hard layer
- Critical load Lc2: Transition from hard layer \rightarrow substrate

Nanoscratch & nanoindentation for optical layers

Nanoscratch: scratch resistance and adhesion by defined scratching

- Applicable also on very thin coatings (~50 nm)
- SEM for more details

Nanoindentation: hardness and elastic modulus of thin layers

- Indentation depths down to ~10 nm
- Automatic measurements

