

LASER INDUCED SOLDERING ... AN INDUSTRIAL INSIGHT

2022

WHO WE ARE CORE COMPETENCES

esp-engineering is an **owner-managed mechatronic** company based in **Appenzell / Switzerland** Our core competences are related to

WHO WE ARE

OUR GREATEST STRENGTHS

INTERDISCIPLINARITY

We supply methodology, mechanical engineering, automation, control/regulation technology, mechatronic modules, software, risk assessment, impact analysis and after-sales service from a single source.

INNOVATION

We develop **customised**, individual solutions that represent the **optimum** for the customer. Where possible, we prefer sustainable **green tech** options.

PASSION

We engage ourselves value-oriented and with heart and soul from the scoping to the after-sales, from the challenge to the solution.

WHO WE ARE

TEAM

ANDREAS WALSER

CEO FOUNDER

- Over thirty years experience in various areas from software, mechanics to electronics
- Developer to the core, always enters new and exciting areas

BJÖRN SPIESS

CTO ELECTRICAL ENGINEERING

- More than ten years experience in automation technologies
- Passionate teacher at higher technical college

MICHAEL REICH

CTO
MECHANICAL ENGINEERING

- Over twenty years experience in mechanical design
- Combines precision, design and modularity in a unique way

DORIS WALSER

CFO / HRM

- More than ten years experience in human resources and finances
- Shapes our corporate culture with heart and soul

WHO WE ARE LOCATION

Located in the heart of Europe...

WILDER OSTEN

... on the wild eastern part of Switzerland

... balanced between technique and nature

esp-engineering gmbh

Trogenerstrasse 23 9055 Bühler Switzerland

E-Mail: info@esp-engineering.com

Phone: + 41 71 791 0260

TABLE OF CONTENT

- BASICS
 - WORKING PRINCIPLE / REQUIREMENTS
 - SINGLE UNIT PROCESS / PARAMETERS
 - MATERIALS
- SIMULATIONS
 - MODELLING / SOLVING / VALIDATING
- REALISATION
 - WETTABILITY / SOLDERABILITY
 - REAL SAMPLE
 - FAILURES
 - LARGE SCALE PROCESS
- CONCLUSIONS

CERAMIC PRESSURE SENSOR (CPS) - WORKING PRINCIPLE

Reference chamber pressurised at 10⁻⁷ mbar

Capacitive measurement principle

CERAMIC PRESSURE SENSOR (CPS) - REQUIREMENTS

Reduction of yield losses due to **improper solder joints**

Reduction of yield losses due to **thermomechanical stress**

Increase throughput by cycle time reduction

Minor changes in material surface allowed

Flux-free soldering under **high-vacuum** (10⁻⁷ mbar)

esp-engineering :

CERAMIC PRESSURE SENSOR (CPS) - SINGLE UNIT PROCESS

(1) Load

Surface cleaning, solder application

(2) Pre-Heating

Temperature ramp up below solidus point

(3) Soldering

Temperature increase above melting point

(4) Post-Heating

Temperature stabilisation / profile for minimal stress

(5) Cooling

Cooling down ramp, down to room temperature to minimize stress

(6) Unload

Remove soldered component

esp-engineering 🖼

CERAMIC PRESSURE SENSOR (CPS) - PARAMETERS

- Laser source
 - Wavelength
 - Power
 - Continuous and / or pulsed mode
- Optics
 - Beam shaping
 - Intensity distribution
- Assemblies / Components
 - Surfaces
 - Wettability
 - Transmission / reflection / absorption
 - Bodies
 - Coefficient of thermal expansion
 - Heat transfer
 - Shrinkage

CERAMIC PRESSURE SENSOR (CPS) - MATERIALS

CERAMIC PRESSURE SENSOR (CPS) - MATERIALS

TABLE OF CONTENT

- BASICS
 - WORKING PRINCIPLE / REQUIREMENTS
 - SINGLE UNIT PROCESS / PARAMETERS
 - MATERIALS
- SIMULATIONS
 - MODELLING / SOLVING / VALIDATING
- REALISATION
 - WETTABILITY / SOLDERABILITY
 - REAL SAMPLE
 - FAILURES
 - LARGE SCALE PROCESS
- CONCLUSIONS

CERAMIC PRESSURE SENSOR (CPS) - SIMULATION I (MODELLING)

(1) Create model

(2) Define conditions

(3) Define loads

(4) Define physics

CERAMIC PRESSURE SENSOR (CPS) - SIMULATION II (SOLVING)

CERAMIC PRESSURE SENSOR (CPS) - SIMULATION III (VALIDATING)

TABLE OF CONTENT

- BASICS
 - WORKING PRINCIPLE / REQUIREMENTS
 - SINGLE UNIT PROCESS / PARAMETERS
 - MATERIALS
- SIMULATIONS
 - MODELLING / SOLVING / VALIDATING
- REALISATION
 - WETTABILITY / SOLDERABILITY
 - REAL SAMPLE
 - FAILURES
 - LARGE SCALE PROCESS
- CONCLUSIONS

esp-engineering :

CERAMIC PRESSURE SENSOR (CPS) - REALISATION

WETTABILITY / SOLDERABILITY

- Evaluate different surface activation processes like plasma-cleaning
- Laser power variation
- Laser beam shape variation
- Surface adaption with different coatings to increase / decrease absorption
- Evaluate different solder materials
- Evaluate Pre-Heating
- N₂H₂ forming gas, prevents oxidation

esp-engineering :

CERAMIC PRESSURE SENSOR (CPS) - REALISATION

REAL SAMPLES

- Laser source with 150 W @ 940 nm (coupled into 400 um fibre)
- Optics for beam shaping and collimation
- Working distance between fibre-output and substrate 300 mm
- Sensor under vacuum and pre-heated at 150 °C

CERAMIC PRESSURE SENSOR (CPS) - REALISATION

esp-engineering ::

REAL SAMPLE

esp-engineering ::

CERAMIC PRESSURE SENSOR (CPS) - REALISATION

- FAILURES
 - Bad solder joint

CERAMIC PRESSURE SENSOR (CPS) - REALISATION

• LARGE SCALE PROCESS

Sensors per run: 33

Vacuum chamber pressure: 10⁻⁷ mbar

Soldering time: 16 s per solder joint, results in 10 mins per run

PROS

- Reliable technology, suitable for various applications
- Fast soldering process
- Non-contact, therefore no physical stress or damage occurred during contacting
- High repeatability
- Flux-free or flux-base soldering, paste / wire

CONS

- Not all materials can be processes
- Material- and surface-related process parameters like transmission, absorption, ...
- Laser protection guidelines must be observed

