OST Ostschweizer

Fachhochschule

Photothermal deflection measurements in optical materials at 355 nm **OCLA 2021**

Heidi Cattaneo

Institute for Microtechnology and Photonics / Optical Systems Manufacturing

Motivation

Subsurface damage in optical materials

- Origin and forms of SSD:
 - Manufacturing steps, surface pretreatment, coating process, handling, material inhomogeneities, impurities,...
 - Cracks, contamination, sub-stoichiometry and other flaws in coatings
 - Local variations in material properties
- Consequences of SSD
 - Local changes in absorption and scattering, electric field and light intensification
 - Premature degradation, reduced resistance for laser induced damage

Residual cracks in optical materials J. Wang et al., J. Eur. Opt. Soc. – Rapid Pub., Vol. 6, 11001, 2011.

Microscope image of a sample after LIDT

SSD detection

Photothermal deflection

- Measurement principle:
 - Nonlinear pump-probe experiment
 - Based on absorption related changes in the material

Absorption
Iocal heating
T gradient

local refractive index gradient & surface displacement

- Measurement signal: Probe beam deflection (defocusing, interference and polarization effects)
- Detection scheme: transmission
- Parameters that effect PTD signal:
 - Laser parameters (P_{pump} , P_{probe} , d_{pump} , d_{probe} , f_{pump} , λ_{pump})
 - Thermal and optical properties of the sample (κ , ρ , α_{abs} , α_{T} , $V_{particle}$, dn/dT)

Photothermal deflection

Setup

- Pump lasers at 355 nm (P_{ave} max 5 W; f 20 kHz; τ_p 10 ns) & 375 nm (DL 70 mW; cw; analog modulation)
- Probe laser: stabilized HeNe-laser (1 mW; cw)
- Focusing through same achromatic objective ($d \sim 10 20 \mu m$)
- Scanning of the sample: XYZ translation stages (sub-µm resolutions)
- Detection with quadrant photodetector, Outputs: SUM (transmission), X and Y (DC and AC deflection)
- Resolutions: Transmission: d_{spot}/Z_{R} ; PTD: < 2.5 μ m/ 25 μ m

PTD results: Variations in T and UV absorption mappings

SSD as cracks in optical substrates

- Transmission (SUM): Cracks already visible as reduced transmission
- PTD (X/Y AC): «0»-signal inside a crack, beam deflection on crack wall

SSD as inhomogeneities and contamination

Example:

- Transmission (SUM): changes in optical properties (scattering sites, dust particles,...) •
- PTD (X/Y AC): Material inhomogeneities, contamination visible as peaks

Uncoated LBO crystal, (150 μ m)² area, 5 μ m step, $P_{UV} \sim 200$ mW

SSD as coating failure

- Transmission (SUM): coating failure as reduced transmission
- PTD (X/Y AC): «Damage front»

Example: Coated LBO crystal, (500 μ m)² measurement area, 10 μ m step size, $P_{UV} \sim 20$ mW

SSD as material changes under LIDT sites

- Transmission (SUM): LIDT as reduced transmission, coating changes / delamination as increased transmission
- PTD (X/Y AC): material changes (e.g. density)

Example: Coated FS substrate, (400 - 500 μ m)² measurement area, 10 μ m step size, $P_{UV} \sim 400$ mW

SSD as material inhomogeneities / effect of surface pretreatment

- Transmission (SUM): variations in transmission due to surface roughness •
- PTD (X/Y AC): granular structure visible as local variations in absorption

Example: uncoated ion-beam milled LBO crystal, (500 μ m)² measurement area, 5 μ m step size, $P_{\mu\nu} \sim 200$ mW

lon-beam milling of 20 µm:

lon-beam milling of $1.5 \,\mu m$:

Other effects in materials due to UV absorption

- Enhanced absorption in non-linear materials:
 - Two-photon absorption in the UV region & creation of meta-stable states
- UV-enhanced stresses and surface cleaning

Conclusions

Photothermal deflection measurements in optical materials at 355 nm

- SSD in optical materials
 - Origins from manufacturing and handling steps
 - Cracks, contamination, material inhomogeneities,...
 - Effects the life time and damage resistivity of the material
- Photothermal deflection in transmission configuration
 - Sensitive, capable for high resolution
 - Transmission and PTD scans can be measured simultaneously
- Assignment of different types of SSD
 - Variations in transmission mapping: cracks, other scattering sites, surface inhomogeneities
 - Variations in UV absorption mapping: thermo-optical inhomogeneities, contamination, damage front in coatings

Acknowledgements

Special thanks to:

- Innosuisse for financial support
- Project partners:
- Collegues at OST and RhySearch

Innosuisse - Schweizerische Agentur für Innovationsförderung

Thank you for your attention!

Eastern Switzerland University of Applied Sciences

IMP Institute for Microtechnology and Photonics