

Ultrafast Laser Solutions for Microprocessing

Dr. Kurt Weingarten Lumentum Switzerland Ruetistrasse 12 Schlieren

4-November-2016

Lumentum Switzerland AG

- Founded in 1995 as Time-Bandwidth Products, a <u>spinoff</u> of the Ultrafast Laser Physics group from <u>ETH Zurich</u>
- Grew up in Technopark Zurich
- Specialized in development and manufacturing of high quality <u>ultrafast lasers</u>
- Moved to expanded and upgraded facility in Schlieren in <u>July 2013</u>
- Acquired in Jan 2014 by JDSU
- JDSU split into Lumentum and Viavi on 1-August-2015

By the numbers

\$815M in FY15 revenue*

~2,000 employees

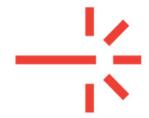
8 offices around the globe

>1,000 patents

Global operations

Focused on optical and photonic products

TELECOM


Broad portfolio of optical components and subsystems (that will be the basis of 100G metro builds)

DATACOM

Optical transceivers with a focus on leading the 100G transition

COMMERCIAL LASERS

Laser solutions enabling high-value materials processing applications that are growing faster than the broad market

3D SENSING

Optical components for emerging PC and mobile device applications that leverage our telecom/datacom capabilities

Telecom/Datacom operation

Vertical and functional integration core technology developed in-house with assembly and test at low cost CMs

Modules and Circuit Packs

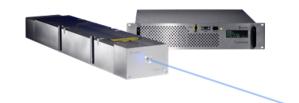
Sub-Assemblies and Components

Internal Wafer Fabrication

Indium Phosphide (InP)

Lithium Niobate (LiNbO₃)

Silica/Silicon (SiO2/Si)

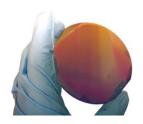


Gallium Arsenide (GaAs)

Commercial Lasers and 3D Sensing operation

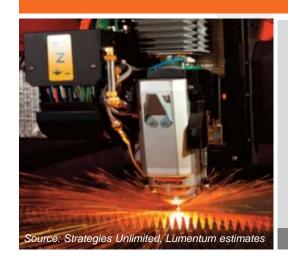
Vertical and functional integration core technology developed in-house with assembly and test at low cost CMs

Commercial Lasers and Modules



Pump Sources (industrial diodes)

Internal Wafer Fabrication


GaAs Wafer

Gallium Arsenide (GaAs)

Commercial Lasers Trends

\$2.5B SAM Opportunity Lumentum Served Market

Macro (kW) Materials Processing (CO₂ Replacement)

\$1,500M

Cutting

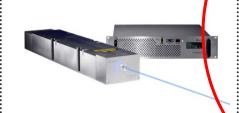
Welding/other

Micro-Materials
Processing (Mechanical
Tool Replacement)

\$600M

Biomedical and Analytics Instrumentation (Long Lifecycle)

\$400M


Gen2 4kW Fiber Laser Engine

Gen1 4kW Fiber Laser Engine

High power nanosecond UV lasers

High power picosecond lasers

Laser Micro Materials Processing of Consumer Electronics

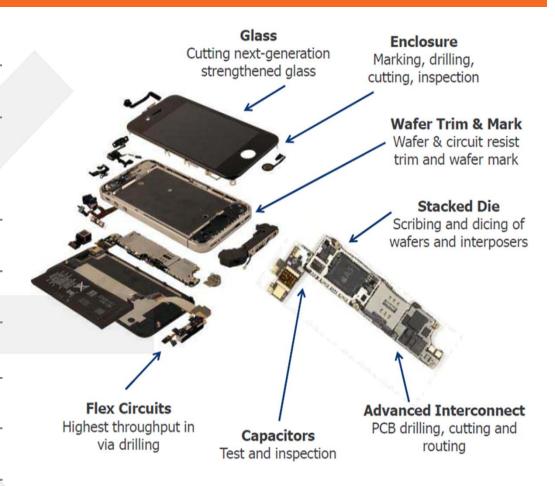
>1B Smartphones and Tablets in 2014

Si IC singulation

MEMS, RF and power devices

PCB via holes

Si/glass/other interposers


LED flash singulation

Ceramics cutting

Marking, cutting, drilling, welding

TFT annealing, AMOLED

Hydro/oleo-phobic surfaces

PicoBladeTM Industrial Picosecond Micromachining platform

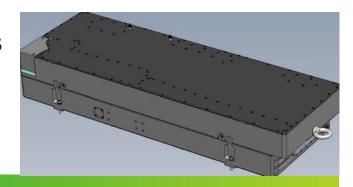
OEM Laser for micro-material processing

PicoBladeTM

fully integrated picosecond laser

Average power	up to 50 W		
Pulse-frequency	single-pulse to 8 MHz		
Pulse-energy	up to 200 μJ		
Pulsewidth	10 ps		
Peakpower	up to 20 MW		
Wavelength	355, 532, 1064 nm		
M^2	< 1.3		

Advantages of Lumentum's PicoBlade



- Most flexible architecture on the market in terms of power, wavelength, and pulse modulation formats
- FlexBurst
 - Highest available burst envelope energy
 - Fully "flexible" burst patterns offer ability to further optimize a process
- Highly Reliable
 - Passively mode-locked "heart" using SESAM technology
 - Conservative and proven design throughout system
- Lumentum manufacturing agility with scalability
 - Network of world-class photonics contract manufacturing for rapid, high-volume product ramps

APPOLO Project

- Simple architecture for <u>high-repetition rate</u> sub-picosecond highaverage power pulses (e.g. target applications use high-speed line scanners)
- YBIX femtosecond seed laser plus multi-stage non-fiber amplifiers
 w/ Lumentum pumps
- No stretcher or compressor components
- Achieved >100W, M² =1.3, 800 fs pulses at 5-16 MHz
 and 1030 nm on benchtop
- Building on PicoBlade OEM platform
- Prototype delivered to Burgdorf application labs

Laser System Design: Oscillator

- MOPA: YBIX oscillator + 2-stage Yb:YAG amplifiers
- Why YBIX?
 - Robust SESAM® mode-locking
 - High peak power
 - Ultrashort pulses, 200 fs

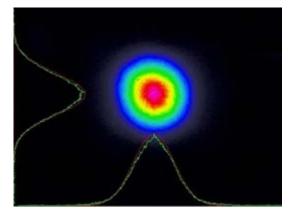
Laser System Design: Oscillator

- MOPA: YBIX oscillator + 2-stage Yb:YAG amplifiers
- Why YBIX?
 - Robust SESAM® mode-locking
 - High peak power
 - Ultrashort pulses, 200 fs

Customized YBIX oscillator parameters:

110.0%/ 21.00V/ F 102m 20.0 Auto £ 2 12.0V

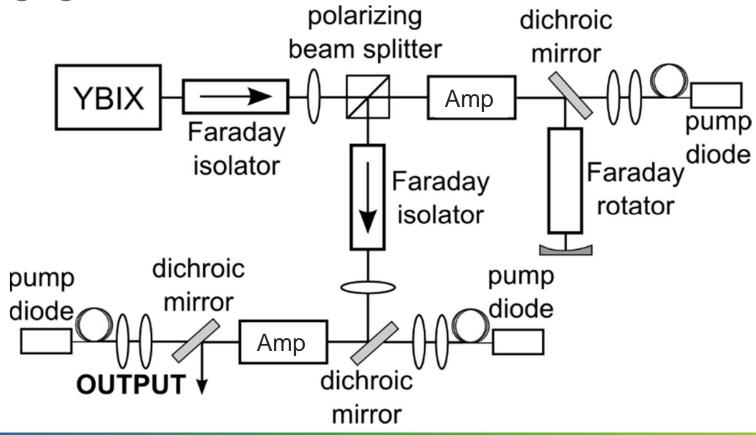
P = 2.8 W @ 83.4 MHz


T = 380 fs
1030 nm

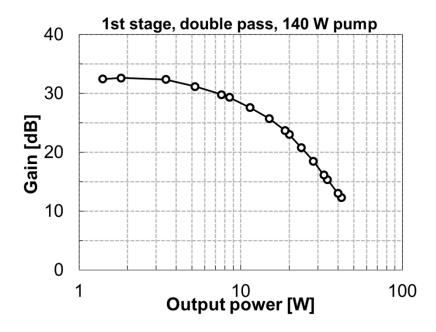
+Width(1): 19.9us +Width(1): 19.9us

Source Clear Frequency Period Peak-Peak

Autocorrelation trace



Beam profile

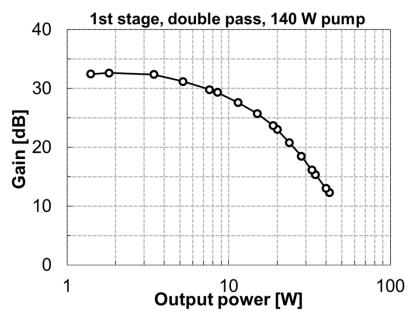

Laser System Overview

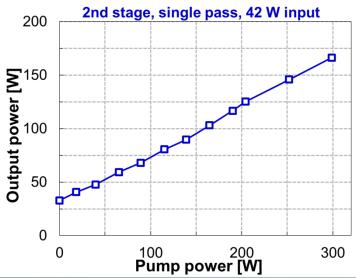
- No CPA
- High brightness 105-µm fiber-coupled pump diode,
 140 W, 940 nm
- High gain!

appolo

Gain Curves

■ 1st stage amplifier:


Small signal gain: >32 dB


Maximum output power: 42 W

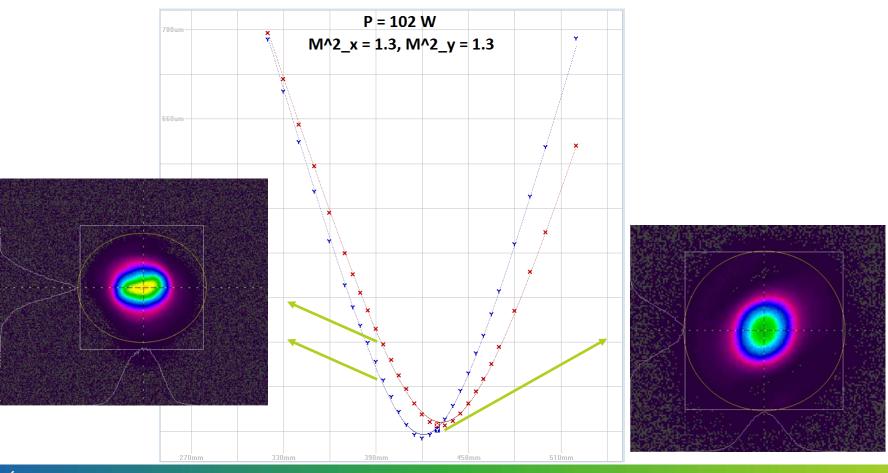
Extraction efficiency: 28 %

appolo

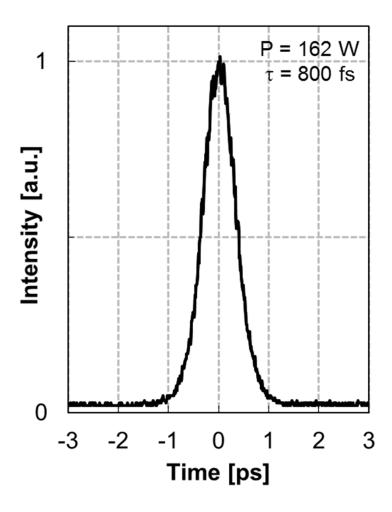
Gain Curves

1st stage amplifier:

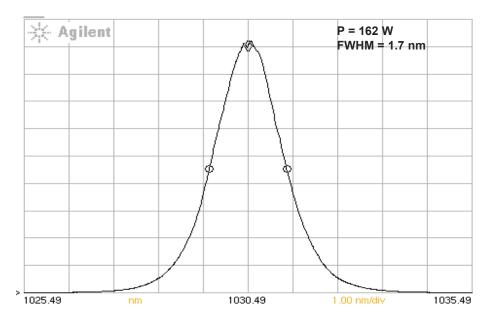
- Small signal gain: >32 dB
- Maximum output power: 42 W
- Extraction efficiency: 28 %


2nd stage amplifier:

- Maximum output power: 162 W
- Extraction efficiency: 42 %



Beam quality


Beam quality factor, M^2			
Oscillator	@ 102 W output	@ 124 W output	@ 162 W output
< 1.1, 1.1	1.3, 1.3	1.4, 1.5	1.9, 1.9

Autocorrelation 800 fs at 160 W output

Optical spectrum centered at 1030.5 nm 1.7 nm FWHM at 160 W output

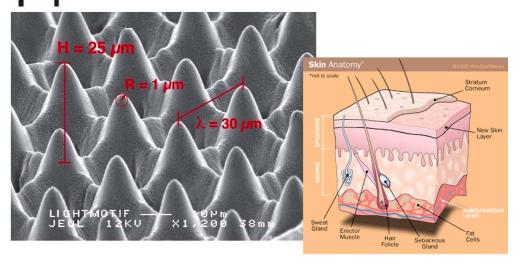
abbolo

Summary and Outlook

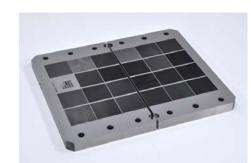
- Compact laser system that delivers >100 W femtosecond pulses with only 2 amplifier stages
- High brightness pumping results in the highest small signal gain (>30 dB dB) achieved
- A bidirectional pumping scheme of the second amplifier allowed us to reach 160 W with 2 amplifier stages

Acknowledgment

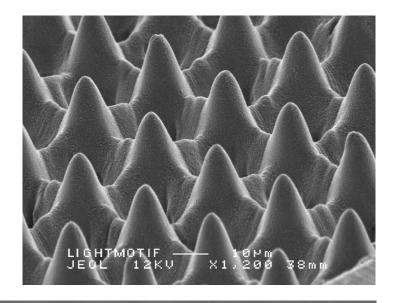
Hub of Application Laboratories for Equipment Assessment in Laser Based Manufacturing

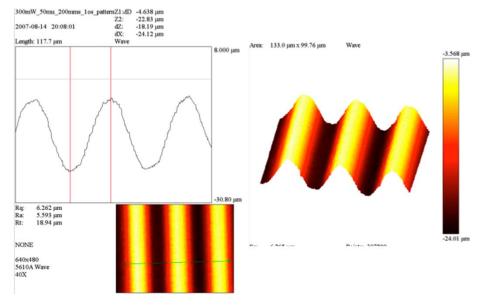

This work was partially financially supported by EU FP7 project Appolo Grant Agreement 609355

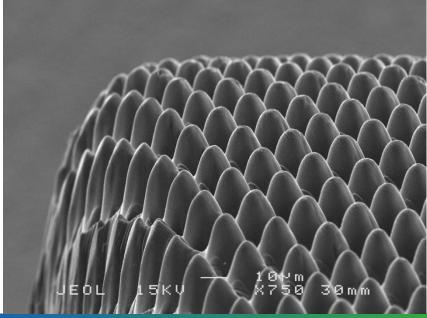
FP7 Project APPOLO

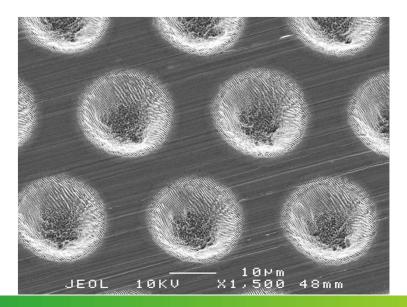


- Development of technology for soft-touch and anti-glare surfaces in car interiors
- 'Soft-touch' effect by reduced skin friction,
- Precisely 'engineered' skin contact surface
- Anti-glare effect by dense and highly diffusing microtextures
- Optimization of texture, process and machine
- Further development towards industrial use of technology








Direct-Write Textures

Thank you

www.lumentum.com

/LUMENTUM