

Grantham Institute for Climate Change

Materials Science & Technology

Environmental and Economical Impact of PV Energy Production

22 October 2013

The carbon emissions mitigation potential of emerging solar photovoltaic technologies

Jenny Nelson,

Chris Emmott, Antonio Urbina, Alvin Chan, Chiara Candelise, Ned Ekins-Daukes, Ajay Gambhir

Department of Physics and Grantham Institute of Climate Change, Imperial College London

Support: Grantham Institute, EPSRC, Royal Society

Why we are interested in energy payback time

Imperial College London

- Research into energy generating and saving technologies, e.g.
 - Solar PV
 - Solar fuels
 - Solar thermal
 - CCS
 - Fuel cells
 - Electric vehicles
 - Smart grids
 - Lighting
 - Cooling
 - Etc...

collaboration

Research into carbon
emissions mitigation
potential of technologies

Grantham Institute for Climate Change

- Low carbon pathways modelling
- Negative emissions
- Renewable energies
- Policy interface

Role of emerging technologies?

Example: Low carbon pathways modelling

UK govt Dept Energy & Climate Change supported study of low carbon pathways in India to 2050

Possible emissions reductions depend on technology development and related carbon intensity

Role of solar in decarbonising the power sector

- Solar power due to provide over 10% of electricity by 2050, (much more in some forecasts)
- Solar power required to grow faster than any other technology

Abatement cost of Solar Power

Implement immediately

- Research and development needed to reduce the abatement cost of solar
- Understand how cost depends on
 - Technology
 - Application context
 - Location

Technological innovation and the cost of solar PV

Cost reductions follow maturing of the technology through innovations in manufacturing and design

> New PV technologies are still improving.

Further cost reductions will follow through innovations in:

- Materials
- Manufacturing
- Application
- System design.

Status of solar PV: mature and emerging technologies

Status of solar PV: Focus of research

- Research can bring down the abatement cost of implementing solar power, through:
 - improved performance
 - lower cost production
 - optimised system configuration

Emerging: e.g. **Printable PV** Lower cost and C intensity

Research Focus: Printable photovoltaic materials

Solution processable organic, inorganic or hybrid semiconductors Manufacture by printing or coating

Lightweight, flexible solar cell device

- Advantages of printable PV
 - Light weight, colour and flexibility
 - Low capital investment
 - Rapid growth in production possible
- Dramatic performance improvement
 - Organic: $2\% \rightarrow 11\%$ efficiency since 2001
 - Dye/perovskite: $7\% \rightarrow 15\%$ since 1990
- Potentially disruptive technology
- Strong science base in UK printed electronics

Scientific research:

New materials Process / manufacture routes Novel device concepts Modelling and design

Cost modelling and life cycle analysis

Modelling costs and emissions mitigation potential

- Manufacture:
 - Life cycle analysis of new technologies as projected in production
 - Identify key process and materials factors limiting cost and carbon intensity
- System :
 - Comparison of different solar PV technologies in given application contexts or locations
- Deployment:
 - Analysis of the cumulative emission savings available through PV rollout scenarios

Case Study 1: Cost and life cycle analysis of OPV

Research example: Replacement of ITO

- Problem: rough surface causes short circuits
- **Solution**: "planarise" with double layer of TiO2

Result: fully solution processed 2.3% efficient ITO free device. ⇒4% devices in a roll-to-roll process.

Dr Sachetan Tuladhar: KTS placement at Solar Press

Case Study 1: Cost and life cycle analysis of OPV

Cost: Lifetime dominates the cost effectiveness

Identify the factors dominating cost and embedded energy

Modelling costs and emissions mitigation potential

- Manufacture:
 - Life cycle analysis of new technologies as projected in production
 - Identify key process and materials factors limiting cost and carbon intensity
- System :
 - Comparison of different solar PV technologies in given application contexts or locations
- Deployment:
 - Analysis of the cumulative emission savings available through PV rollout scenarios

- Calculate energy output, specific emissions, cost of system, cost of electricity, abatement cost for each configuration
- Design tool to evaluate potential of new technologies

- Calculate energy output, specific emissions, cost of system, cost of electricity, abatement cost for each configuration
- Design tool to evaluate potential of new technologies

- High storage costs dominate system sizing and push up costs
- CPV more sensitive to intermittency so requires more storage
- Specific emissions dominated by distribution network but always lower than grid extension

 Use projections of fuel price and technical development to project future cost effectiveness of PV.

Case Study 3 : Photovoltaic greenhouses

Is it economic?

Evaluate PV performance as function of material absorbance

Variable	Best Case Scenario	Baseline Scenario
Discount rate	2%	6%
Lifetime	10 years	5 years
Module Cost	30 €/m ²	40 €/m ²
Performance ratio	85%	80%
Insolation	2200 W/m ²	2200 W/m ²
Value of electricity	0.159 €/kWh	0.095 €/kWh
Annual increase in electricity value (above inflation)	0%	3%
Minimum cell (Module) efficiency	2.6% (1.75%)	12.9% (8.63%)

Economic analysis

Modelling costs and emissions mitigation potential

- Manufacture:
 - Life cycle analysis of new technologies as projected in production
 - Identify key process and materials factors limiting cost and carbon intensity
- System :
 - Comparison of different solar PV technologies in given application contexts or locations
- Deployment:
 - Analysis of the cumulative emission savings available through PV rollout scenarios

Case Study 4: Projection of emissions savings

OPV: Espinosa et al., En.Env.Sci 2012 CdTe: Fthenakis et al., IEA PVPS task 12 (2011) C-Si: EcoInvent data

Model of technology deployment: For different PV technologies

Case Study 4: Projection of emissions savings

- Faster deployment costs more carbon in short term and saves more in long term
- Low embedded energy technologies more effective at mitigation (within area and availability constraints)

Case Study 4: Projection of emissions savings

Define a dynamic abatement cost:

Short term cost of emissions savings can differ substantially from static marginal abatement cost

Work in Progress: Analysis of Technological Innovation

- SPECIFIC Innovation and Knowledge Centre @ Swansea University, co-located with new solar energy research institute Ser Solar. Linked to Imperial.
 - Research into printable photovoltaics
 - Scale-up facilities
 - Technology transfer

 Opportunity to study the potential impact of innovation in modules design, materials or processes on life cycle costs and energy

Work in progress: Energy systems models

Improved energy systems models allow to model and distinguish new PV (and other) technologies

Conclusions

- Solar PV will be required to deliver large fraction of the future power supply and is capable of delivering, but hindered by high abatement costs
- Potential to reduce cost and abatement cost through research and development of emerging technologies
- Life cycle analysis and system modelling help to
 - Identify and change key factors that limit mitigation potential
 - Choose the right technology and system configuration for a given context
 - Project cumulative emissions savings for different scenarios and technologies
 - Focus on mitigation and not only electricity cost, when developing technologies
- We welcome collaborations with others addressing high throughput PV technologies, manufacture, LCA, innovation modelling, economic analysis