

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Real Time Process Control with Optical Coherence Tomography

16th of June 2016,

Ch. Meier

► HUCE, OPTOLAB

Overview

- Short introduction to OCT Systems
- Resolution and NA,
- SD OCT and SS OCT, Scanning and Full Field Systems
- Examples of Real Time Process Control using OCT

 Braucht mindestens 30 min. Lasik Film ist aus der Präsentation gelöscht

Introduction and Theory

OCT: Basic principle

- Comparable with ultrasonic tomography
- measuring the time delay of back-scattered or back-reflected light
- Too short time delays for direct measurements
- interferometric measurements

3D Imaging by lateral scanning

- Cross sectional images obtained by scanning in x and y direction
- A-scan, B-scan, C-scan

Time Domain OCT Michelson Interferometer setup with moving reference mirror Intensity a.u. Source $S(\lambda)$ 0.5 0.8 0.82 0.86 0.88 0.84 0.9 0.92 Detector Wavelength um 1.5 Intensity a.u. 0.5 -100 60 100 Reference mirror position in um The signal envelope represent the scattering or reflectivity depth profile x

z

Axial Resolution

- General signal in Frequency Domain $FD(k) = S(k) \left(DC + 2r_R \sum_i r_{s_i} cos(2kz_i) \right)$
- General signal in Frequency Domain $SD(z) = \mathcal{F}^{-1}[S(k)] \otimes \mathcal{F}^{-1}[2r_R \sum_i r_{s_i} cos(2kz_i)]$
- Gaussian source spectrum -> Gaussian PSF
- PSF = axial resolution = Coherence Length

$$\Delta z = \frac{2\ln(2)}{\pi} \frac{\lambda_c^2}{\Delta \lambda} = \frac{4\ln(2)}{\Delta k} \qquad \Delta k = \frac{1}{2\pi} \frac{\Delta \lambda}{\lambda_c^2}$$

Resolution

Acquisition Time

A-scan rate

Camera	Line rate /kHz	Swept Source	Rate /kHz
AVIIVA	100	Santec	50 - 100
Basler	140	Axsun, Insight, Thorlabs	100-200
Fraunhofer, AIT	600	OCTLight	850
		OptoRes	1500

► 512 lines/frame, 512 frames

A_Scan rate/kHz	B-scan rate/ Hz	C-scan rate/ Hz	
100	195	0.38	
200	390	0.76	47
850	1660	3.24	

Examples of Real Time Process Control

Full Field OCT

- Phase-Sensitive Parallel
 Optical Coherence Tomography
- Number of pixels: 300 x 300
- Smart pixels (demodulation)
- Frame rate up to 10^6/s
- C-scan rate 3-6 Hz (1mm depth)

Solder Bumps 3Dx in um y in un y in um x in um

Topographic measuremenents

Layer thickness measurement

Layer thickness measurement

Schichtdickenmessung in Schläuchen

Optimized Laser Head for Contact-Free Osteotomy with real time Depth Control

- Robot for bone cutting
- Clean cuts, better healing

vs. Mechanical

Measurement of cutting depth

Advanced Osteotomy Tools

After each laser-shot one
 B-scan for depth measurement

Ultra-high Resolution OCT Monitoring for Dosimetry Control during Selective Retina Laser Treatment

- Coagulation of RPE, photoreceptor cells, choroid
- Introduced tissue damage is irreversible
- Excessive tissue damage for RPE-linked pathologies^[1]

Selective Retina Therapy (SRT)

- Sub-threshold laser treatment
- Tissue damage remains limited to the retinal pigment epithelium (RPE)
- Introduced retinal lesions remain ophthalmoscopically barely visible or invisible
- Dynamic changes in tissue detected by time-resolved OCT provide real-time feedback for laser dosimetry

Retina: en-face view. Treatment sites (white) at different power levels and treatment plan

Time-resolved OCT data

- Effects originate in RPE / Bruch's membrane complex and expand to inner retina
- Signals linked to thermal expansion, thermal vibration and changes in tissue scattering
- Axial tissue movement in the range of few µm/s up to few m/s detectable

Clinical SRT Studies: OCT Visibility

Fig. 3. The OCT M-mode scan (a) depicts SRT-induced RPE damage in OCT imaging (fringe washout), the corresponding fluorescein angiography (b) and fundus photography (c). The treatment was done on an ex-vivo porcine eye.

Damage mechanisms

- Thermal vibration shockwaves introduced by abrupt heating
- Thermal expansion long term changes after the pulse, typical relaxation times of tens of ms

P. Steiner. PhD Thesis 2015

Real Time Optical Coherence Tomography Laser Dosimetry control during Selective Retina Therapy

Investigation with technical samples

Bern University of Applied Science | HuCE-optoLab

P. Morgenthaler Master Thesis 2016

Seeing Surgical Laser

- Surgical laser equipped with measurement and visualization system
- Enables planning and controlling the surgery
- Product launch 2014

Challenge: Data Processing

- Algorithms to extend the imaging range
- Surgery planning by touch screen

ZIEMER OPHTHALMOLOGY

HuCE-optoLab

Thank you for your attention