

Laser damage resistance of optical coatings in the sub-ps regime: limitations and improvement of damage threshold

Laurent Gallais*

Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille, France

<u>*laurent.gallais@fresnel.fr</u> www.fresnel.fr/perso/gallais

Optical Coating group

- Topics:
 - High performances optical interference filters
 - Innovative concepts and components
- Staff:
 - 7 permanent, 2 PhD
- Equipement:
 - 250m² clean rooms
 - 5 different machines with in situ optical monitoring: EBD, IAD, PIAD, DIBS, PARMS
 - Commercial and custom characterization systems

Laser Material Interaction group

- Topics:
 - Physics of laser material interactions (fs to CW)
 - Laser damage of optical components for high power applications
 - Laser processing
- Staff:
 - 6 permanent, 3 post-doc, 7 PhD students
- Equipment:
 - fs & ns LIDT measurements
 - CW laser processing
 - Commercial and custom characterization systems

Introduction

Laser damage

Outline

Basics of short pulse laser damage process Damage resistance of optical materials Defect-induced laser damage & damage growth Improvement of laser damage resistance

Outline

Basics of short pulse laser damage process

Damage resistance of optical materials Damage initiation on defects Improvement of laser damage resistance

Basics of short pulse laser damage process Non-linear ionization

Ionization processes under high intensity illumination

Schematic representaion of Multi-Photon Ionization, Tunnel Ionization, Impact Ionization and Electronic Avalanche

« free » electron generation evolution during the pulse

Case of HfO_2 film (5.5eV), at 800nm, 100fs, $1J/cm^2$

Basics of short pulse laser damage process

1.2E17

Energy deposition in the material

The material becomes strongly absorbing due to free electron response

Significant absorption of the laser intensity occurs due to optical properties evolution

Intensity:

1.0E17 1.0E17 1.0E17 1.0E17 1.0E17 1.0E16 1.0E16 1.0E16 1.0E-12 -5.0E-13 0.0 5.0E-13 1.0E-12 Time (s)

Evolution of the real and imaginary part of the refractive index as a function of free electron density, as described by Drude model* Intensity as a function of time in the case of a Ta_2O_5 film irradiated with a 500fs, 1030nm pulse.*

*L. Gallais et al., Appl. Phys. Lett. 97, 051112 (2010)

Basics of short pulse laser damage process Damage

Damage of the material takes place when the deposited energy is sufficient to cause material modifications

Calculation of energy per unit of mass deposited in a Sc_2O_3 film with 500fs at 1030nm *

Thermal or mechanical processes lead to material removal

Hafnia film submitted to different fluences at 500fs/1030nm (each image is a different site)*

*D.B. Douti et al., Appl. Phys. A., to be published

Basics of short pulse laser damage process Time scales

Basic processes occur at different timescales:

- Excitation
 - Absorption by free electrons in the material
 - Initial free electrons in metals
 - Free electrons created by non-linear ionisation in dielectrics
- Energy transfer
 - From electrons to lattice
 - · Heat diffusion in the material
- Response of the material
 - Phase change
 - Hydrodynamic motion, shock waves
 - Thermo-mechanical stress
- Material removal
 - Thermal or mechanical effects depending on the deposited energy, material properties and irradiation conditions

fs

ps

ns

Basics of short pulse laser damage process Main differences with the ns regime

Basics of short pulse laser damage process

Material modifications under multiple pulses

Incubation effect related to the accumulation of electronic defects

The different pathways for excitation, relaxation and trapping of electrons, characterized with a rate/lifetime Decrease of the laser damage resistance under multiple pulses

 SiO_2 single layer, 500fs, 1030nm, multiple shots at 10Hz (Fluence set to <u>70% of the single pulse threshold</u>)

Basics of short pulse laser damage process

Thermal effects under multiple pulses

Sub-ps Laser irradiation can locally heat the materials

Finite-element simulations of the temperature rise of a protected gold mirror 2µs after a⁄dm22J90 fs, 800 nm, 10µm diameter pulse* Heat can accumulate if the component does not have time to cool between two pulses

Fluence needed to reach the melting point metallic mirrors at 1 kHz and 4.3 MHz repetition rates*

*B. Nagy et al., Opt. Lett. 40, 2525 (2015)

Outline

Basics of short pulse laser damage process Damage resistance of optical materials

Damage initiation on defects Improvement of laser damage resistance

Damage resistance of optical materials Intrinsic Laser-Induced Damage Threshold

Direct dependence of LIDT on the material bandgap

Clear correlation between the refractive index and LIDT AIF. 5 Al₂O₂ Al_O_/AIF_ Al₂O₂/SiO₂ HfO₂ HfO₂/SiO₂ LIDT (J/cm²) R MgF₂ Nb₂O₂ Nb₂O₅/SiO₂ Sc₂O₂ SiO, Ta₂O₅ Ta₂O₅/SiO₂ TiO₂ Y₂O₃ 0∟ 1.2 1.4 1.6 1.8 2.2 2.0 2.4 ZrO

LIDTs of optical materials tested in single-shot at 500 fs and 1030 nm as a function of the measured optical bandgaps*

*L. Gallais et al., Appl. Opt. 53, A186 (2014)

LIDTs of optical thin film materials as a function of refractive index at 1030nm**

Refractive index

ZrO_/SiO_

**B. Mangote et al., Opt. Lett. 37, 1478 (2012)

Damage resistance of optical materials

Parametric dependence

LIDT decreases with pulse duration for dielectrics

LIDT of HfO_2 single layer coatings made by Reactive Low Voltage Ion Plating or Electron Beam Deposition as a function of pulse duration, tested at 1030/1064nm*

*L. Gallais et al., Appl. Opt. 50, C178 (2011)

LIDT decreases with wavelength

LIDT at 100fs as a function of photon energy for different single layer coatings**

**L. Gallais et al., J. Appl. Phys. 117, 223103 (2015)

Damage resistance of optical materials Multiple pulses

Excitations of mid-gap defect states at the microscopic level takes place under multiple irradiations, leading to a decrease of LIDT with increasing pulse number. This effect is strongly dependent on laser irradiation conditions and material

Evolution of the LIDT with the number of pluses at 500fs for <u>Silica</u> film deposited by Magnetron Sputtering* Evolution of the LIDT with the number of pluses at 500fs for <u>Niobia</u> film deposited by Magnetron Sputtering*

*D.B. Douti et al., Opt. Eng. 53, 122509 (2014)

Damage resistance of optical materials Environnemental conditions

LIDT decrease with pressure is observed for oxides

LIDT of Hafnia and Scandia at 1030nm, 500fs, in air and under vacuum (10⁻³mbar)* LIDT (1030nm, 500fs) of dielectrics materials under vacuum at different temperatures*

*A. Hervy et al., Opt. Eng., to be published

Outline

Basics of short pulse laser damage process Damage resistance of optical materials Damage initiation on defects Improvement of laser damage resistance

Physical process

Defect initiation

Macroscopic defects can induce strong local intensity enhancement

Local reduction of damage threshold is observed on nodular defects

FDTD simulations of $|E|^2$ distributions for a nodular defect in a HfO₂/SiO₂ HR mirror* Damage initiated by a nodular defects on a HR mirror under successive irradiations at 1.45 J/cm^{2} .*

*L. Gallais et al., Opt. Lett. 39, 1545 (2014)

Damage densities

Specific damage test

procedures can be applied to quantilfy limiting defects (damage densities / fluence)

Composant optique

Schematic description of a Raster scan test

Isolated damage events related to defects can occur for fluences significantly lower than the "intrinsic" LIDT

Damage sites revealed by a Raster scan test on a HR MMLD mirror (1030nm, 1ps)

Damage growth

Once damage site is initiated, catastrophic damage growth limits the optics lifetime

20µm

Sequence of shots on a defectinitiated damage, at a fluence set <u>to 60%</u> of the single pulse LIDT*

*M. Sozet et al., Opt. Lett. 41, 2342 (2016)

Growth can be triggered for fluences as low as 50% of the intrinsic damage threshold of the component.

Evolution of the probability of growth as a function of fluence (<u>normalized with respect to the</u> <u>single pulse LIDT</u>). HR mirror, 45°, P, 1030nm, 1ps. *

Outline

Basics of short pulse laser damage process Damage resistance of optical materials Damage initiation on defects Improvement of laser damage resistance?

Improvement of laser damage resistance

Materials & manufacturing

Engineered materials such as binary mixtures are interesting combinations for interference coatings used in high-power applications

LIDT of IBS Sc₂O₃/SiO₂ mixtures compared to other coating materials*

*M. Mende et al., Appl. Opt. 52, 1368 (2013)

Reduction of defect densities related to the manufacturing process

Raster scan and 1on1 measurements on different HR mirrors (1053nm, 675fs, 45° AOI, P polar)*

*M. Sozet et al., Opt. Lett. 40, 2091 (2015)

Improvement of laser damage resistance

Optimization of E-field distribution

The theoretical LIDT of a component can be obtained from the knowledge of the E-field distribution and LIDT of materials

Significant improvement can be obtained with optimization of the E-field distribution

Optimization of 45° broadband HRcoatings.for Appolon 10PW laser project*

*A. Hervy et al., Opt. Eng., to be published

LIDT of broadband reflective mirrors :R>99%, $\Delta\lambda$ >250nm (S) / 160nm (P) Tests at 800nm, 40fs, 5kHz**

**A. Hervy, PhD thesis, 2016

Improvement of laser damage resistance Post processing

Laser conditioning or thermal annealing can significantly enhance the LIDT

Specific treatments can mitigate (arrest) laser damage growth

2mm

Improvement of LIDT on the surface of fused silica optis at 355nm, 3ns, with isothermal annealing at 1050°C for 12h*

*T. Doualle et al., J. Appl. Phys. 119, 213106 (2016)

Example of CO₂ laser processing of damage on fused silica for the Laser MegaJoule project*

*T. Doualle et al., Submitted

Conclusions

The physics of laser damage in the sub-picosecond regime is quite well understood

- Intrinsic performances of optical materials can be ranked based on their bandgap and scaling laws can be derived
- Consequently theoretically high laser damage threshold optics can be designed based on available materials
- However for applications two main points need to be considered and deeply studied:
 - 'Incubation', 'fatigue' or heat accumulation effects of the materials under multiple pulses
 - The densities of growing damage sites related to manufacturing defects and/or contamination
- Post processing techniques that have been applied in the ns regime (annealing, laser conditioning, damage growth mitigation, etc..) could also be of potential interest

Thank you for your attention!

Acknowledgments

Laser Material Interactions group

Laser Research Center / Laser Damage group

CESTA/Laser Damage group, PETAL project, LMJ project

Laser Components Department

Apollon project

Coating department