Miniaturised Hermetic Packages in Glass and Sapphire

Mark Fretz

Swissphotonics Workshop

Alpnach, 16.05.2017

SWISS*PHOTONICS

Whthing in the package?

- Challenges in miniaturized packaging
- State-of-the-art package sealing
- CSEM approach
 - Laser assisted bonding
 - Examples
 - Hermeticity testing
 - Volume production

Challenges in Miniaturized Packaging

- Transparency for RF and visible light and Laser assisted bonding
 - Limited number of materials which comply with above requirements and are suitable for harsh environments (e.g. space or implants)
- Solution
 - Sapphire & glasses
 - → Laser assisted diffusion bonding

SCHOTT

Challenges in Miniaturized Packaging

- Bonding of miniaturised packages
 - New bonding materials for harsh environments and medical applications have high melting points (Pt, Ti, Pd, Au)
 - Lid brazing or soldering of these materials generates excessive heat
- Solution
 - (Localised heat) + (bonding below melting point)
 - → (Laser assisted) (diffusion bonding)

Challenges in Miniaturized Packaging

- Stresses
 - High temperature brazing or soldering lead to stresses in the package
- Solution
 - Localised heat keeps the package cool
 - Diffusion bonding generates lower stresses at the interface)
 - \rightarrow (Laser assisted) (diffusion bonding)

Challenges in Miniaturized Packaging

• Hermeticity Testing

- Small packages require lower leak rates down to 6*10⁻¹⁵ atm.cc/s⁽¹⁾
- Current best helium leak rate detection: 5*10⁻¹² atm.cc/s⁽¹⁾
- New Approach
 - Fourier transform infrared spectroscopy (FTIR)

⁽¹⁾G. Jiang, D.D. Zhou, Implantable Neural Prostheses 2, Chapter 2: Technology Advances and Challenges in Hermetic Packaging for Implantable Medical Devices, Springer, 1st Edition

State-of-the-Art Package Sealing

- Glass frit bonding
 - High temperature bonding, not biocompatible
- Laser assisted soldering
 - High temperature, not biocompatible
- Laser welding /Resistance welding
 - Very high temperatures, not biocompatible

CSEM Approach: Laser Assisted Diffusion Bonding

Copyright 2017 CSEM | Miniaturized Hermetic Packages in Glass and Sapphire | Mark Fretz | Page 7

CSEM Approach: Laser Assisted Bonding: Examples

Cochlear Implant

CSEM Approach: Laser Assisted Bonding: Examples

CSem

Copyright 2017 CSEM | Miniaturized Hermetic Packages in Glass and Sapphire | Mark Fretz | Page 9

CSEM Approach: Non Destructive FTIR Leak Testing

- Bombing with N₂O high pressure
 - 2 to 5 bars
 - Not present in ambient atmosphere (low background)
 - Peaks at wavenumber 2237 & 2212
 cm-1

CSEM Approach: Non Destructive FTIR Leak Testing

- Detection depends mainly on
 - Concentration of N₂O
 - Duration of bombing
 - Bombing pressure
 - Length of light path through the package
 - Detector sensitivity/resolution

CSEM Approach: Volume Production

- Array level tested successfully
 - Glass on silicon
- Chip size: 3.350 x 2.0 mm
- Array size : 13.4mm x 8.0mm
- Overall time for the array is 48 seconds

- Estimated on 200mm wafer: 75mins (~4'000 parts \rightarrow 1 sec/part)
- Estimated for 100mm wafer: 15 minutes (~1'000 parts)
- Further reduction by a factor of 4 seems feasible with further optimisation

