

Ultrafast beam deflection for efficient picosecond laser processing

<u>Andreas Oehler</u>, Kurt Weingarten JDSU Zurich - Time-Bandwidth Products, 8952 Schlieren, Switzerland

Beat Neuenschwander, Beat Jäggi, Markus Zimmermann Bern University of Applied Sciences, 3400 Burgdorf, Switzerland

Outline

- Introduction Time-Bandwidth Products
- Ultrafast laser processing
- Discussion Polygon-mirror line scanner
- Processing results
- Outlook

- Spin-off ETH Zurich, commercial ultrafast products since 1996
- Since January 2014 wholly-owned by JDSU
- "SESAM[®]" know-how technology-leader
- International sales-network, established in all key markets
- Established products for industrial "24/7" applications
- Industrial customers in markets such as semiconductor, biotech, material-processing in general, etc.

Material removal with a Gaussian beam

Material removal rate

$$z_{abl} = \delta \cdot \ln \left(\frac{\phi_0}{\phi_{th}} \right) \quad \Longrightarrow \quad \frac{\dot{V}}{P_{av}} = \frac{1}{2} \cdot \frac{\delta}{\phi_0} \cdot \ln^2 \left(\frac{\phi_0}{\phi_{th}} \right)$$

With:

 ϕ_{th} : threshold fluence: δ : energy penetration depth

$$\phi_0$$
: peak fluence $\phi_0 = \frac{2 \cdot E_P}{\pi \cdot w_0^2}$

Optimum point / maximum removal rate

$$\phi_{0,opt} = e^2 \cdot \phi_{th}$$
 $\frac{V_{\max}}{P_{av}} = \frac{2}{e^2} \cdot \frac{\delta}{\phi_{th}}$

Bern University of Applied Sciences

• Rough rule of thumb: Choose a peak fluence between 6 and 14 times ϕ_{th} .

4

Bern University of Applied Sciences

High throughput micro-machining

Options for material processing with high average power:

 \rightarrow

→

→

- Power-sharing (multiple processing sites, diffractive optical elements)
- High pulse energy (if rep.-rate is fixed)
- High repetition rate (with fix, opt. pulse energy)

OK (need lots of equipment, limited, highly specilized applications)

inefficient

most efficient

BUT:

large pulse overlap, leading to thermal side-effects (heat accumulation)

Today: systems limited by scanner performance

Assume:

- Spot diameter (IR):
- Lateral pulse overlap of 50%:
- Pulse repetition rate:

Required lateral scan-speed:

Today's commercial systems:

Pulse-overlap >98%, thermal side-effects ! 20 μm 10 μm MHz (with increasing average power, keeping pulse energy constant)

80 10 m/s

3-5 m/s (e.g. with 100 mm f-Θ)

Potential solution: high-speed line scanners

Example: Next Scan Technology LSE170

- Lateral spot velocity:
- Adressable area:
- F-Θ (telecentric):
- Input aperture:
 - Min. spot diam. (1/e²,M²=1.1)
- Position-accuracy:
- Repeatability:
- Data-format:

25-100 m/s 170 mm x ∞ f=190 mm 10 mm 1) 56 µm (IR) 28 µm (green) 5 µm 3 µm Bitmap

High-speed line scanners

No universal technology, but good for large business-fields:

- Surface texturing
- Flat panels / touch-screens
- "Roll-to-roll" patterning
- Wafer-dicing
- Large area structures with high complexity
 - \rightarrow " complexity is for free"

Ultrafast processing with Polygon-scanners

Example: large-area structuring

- Pulse-frequency: 2 MHz
- Area: 170 x 170 mm² (14500 segments, 1x1mm²)
- Time: 10s (resolution-dependent)
- 400 lines/s

Example: ITO-removal with square flattop-profile

- Pulse-frequency: 6 MHz
- Edge length of focus: 30 µm
- Overlap: 60% (=18 μm pitch)
- → Lateral scanning speed: 108 m/s

OEM Laser for micro-materialprocessing

Laser requirements

Assume:

- Spot diameter:
- Overlap:
- Full scanning speed:

 $50 \ \mu m$ (IR, f=190 mm f-theta) 0 - 75% (full pulse separation – good surface quality) $100 \ m/s$

50 μm pitch (0% overlap):2 MHz12.5 μm pitch (75% overlap):8 MHz

OEM Laser for micro-materialprocessing

PicoBlade[™]

fully integrated picosecond laser

Average power	up to 50 W
Pulse-frequency	single-pulse to 8 MHz
Pulse-energy	up to 200 µJ
Pulsewidth	10 ps
Peakpower	up to 20 MW
Wavelength	1064 nm
M ²	< 1.3

Outline

- Introduction Time-Bandwidth Products
- Ultrafast laser processing
- Discussion Polygon-mirror line scanner
- Processing results
- Outlook

Facette angular offset / displacement

Marking result:

 Solution: compensating with SuperSyncTM technology (not trivial for modelocked lasers)

Facette angular offset / displacement

Experiment:

scan direction

Facette angular offset / displacement

- f=2 MHz, w_0 =28 µm
- Marking single spots on chromium coated glass
- Pitch: kept constant, 100 µm (pixel-selection)

Facette distortions

Experiment

Bern University of Applied Sciences

- Strong deviations for 25m/s.
- Not proportional to increasing distance to start position.
- Accuracy better than ±10µm for 50m/s.
- Accuracy almost within ±5µm for 70 and 95m/s.

Facette distortions

Plus:

- Stabilization of rotation
- (F-theta distortions)
- Solution:
 - Better motion controller
 - Additional, fast deflector in scanning direction (can also correct facette angular offset)

Pyramidal-error

- Variable line-pitch in cross-scan direction
- uneven surface for engraving-applications / multiple passes:

Pyramidal-error

- Using single facette gives constant pitch
- Smooth surface

Pyramidal-error

Solution:

- Using single facet \rightarrow processing 8 times slower
- Averaging pyramidal error → works only for multi-pass, increases minimum feature size
- Additional fast deflector in cross-scan direction

Comparison of different machining strategies

Ablation at 2 MHz in stainless steel with 200 layers

Position repeatability

Scanned spot-pattern vs. fixed spot

Spot-pattern on Si-wafer, n-times; $\lambda = 532$ nm, $f_{rep} = 2$ MHz, v= 70 m/s

- Incubation-effects!
- Fixed spot, n-times;

f_{rep} = 200 kHz (=line-frequency)

Result:

Max. deviation < 600 nm

Bern University of Applied Sciences

Repeatability @ 70 m/s: better ± 1 μm

26

Outline

- Introduction Time-Bandwidth Products
- Ultrafast laser processing
- Discussion Polygon-mirror line scanner
- Processing results
- Outlook

High-power processing results

- Pyramids with 204 layers, marked over 170mm in stainless steel
- Laser parameters: $P_{av} = 42 \text{ W}$
 - v = 95 m/s f_{rep} = 8.2 MHz
- No post-processing / cleaning
- No melt-formation

start

1/3

2/3

end

High-power processing results

- Pyramids with 204 layers, marked over 170mm in stainless steel
- Laser parameters: $P_{av} = 42 \text{ W}$
 - v = 95 m/s f_{rep} = 8.2 MHz
- No post-processing / cleaning
- Single-facet (maximum quality):

start

2/3

end

High-power processing results

- Topography of Switzerland in stainless steel, 2233 slices
- Laser parameters: $P_{av} = 25.6$ W v = 59.5 m/s $f_{rep} = 4.1$ MHz
- Strategy: averaging of pyramidal error
- No post-processing / cleaning

Outlook

- Next-generation polygon-scanners will have active correction for all discussed errors implemented
- Scanning speed will be further increased (for lasers P_{av} > 100
 W) while positioning-accuracy will be further improved
- Different line-length formats will be commercially available

Polygon line-scanners are an interesting option to <u>«bring available power on the road</u>»

Flexible laser systems with high repetition rates are key

3

For today's laser systems, v > 100 m/s is required for high-throughput, high-quality results

Acknowledgement

supported by

Bern University of Applied Sciences

Thank you for your attention

Dr. Andreas Oehler JDSU Zurich Time-Bandwidth Products Rütistrasse 12 8952 Schlieren, Switzerland andreas.oehler@jdsu.com