Organic Photonics: Displays, Lighting and Photovoltaics

June 25, 2008

Dr. Frank Bienewald, CIBA

Organic Photonics Workshop, June 25, 2008, CIBA

CIBA - Broad global presence

Sales 2006

Segments focused on customer industries

Plastic Additives Industries:

- Plastics
- Lubricants
- Home & Fabric Care
- Personal Care

Coating Effects Industries:

- Coatings
- Printing
- Imaging
- Plastics
- Synthetic Fibers
- Electronics
- Information Technology

Water & Paper Treatment Industries:

- Paper and Board
- Oil and Mining
- Water Treatment
- Detergents and Hygiene
- Agriculture

Group Research / New Growth Platform

• Organic Photonics:

- Organic Photovoltaics
- Organic Transistor Materials
- Organic Lighting Materials
- Key to success:
 - Strategic research collaborations with selected external partners
 - Participation in National and International research programs

Strategic Collaborations - Some Examples

• University Partners :

- Prof. B. Batlogg, ETH-Zürich (Material development and testing)
- Prof. Luisa de Cola, Münster (Nanomaterials)
- Dr. Beat Ruhstaller, Winterthur (optical and electrical modeling of devices)
- MPI-Mainz (Conductive nanomaterials)
- Prof. René Janssen, Eindhoven (Photophysical measurements and Solar cell evaluation)

Technology partners

- CSEM (Material testing, Development of screening tools, Evaluation of printing options...)
- VTT (Biomaterials, Printing technologies e.g. Roll-to-Roll printing)

Swiss Research Network

- Focus on the development of OLED materials for printing applications, mainly triplet emitters and host materials
- Strategic collaboration with CSEM for high throughput material testing and device engineering, and ZHW for computational performance simulations

- Several projects funded by Swiss CTI

Organic Photonics Workshop, June 25, 2008, CIBA

Why organic semiconductive materials ?

- Numerous potential new applications in the area of Displays, Power Generation, Sensors, Memories and Data Processing
- Flexible, large area and light weight devices possible

Challenges:

- Good semiconductive properties
- Stability
- Processability
- Versatility

Need to understand the material in order to select and focus on the most promising application

Organic Photonics Workshop, June 25, 2008, CIBA

Why printing ?

- Different levels of performance
- Different applications (limited overlap)

- Large area possible
- Flexible devices achievable

Organic Photonics Workshop, June 25, 2008, CIBA

Challenges for Printing

- Alignment of several layers
- Layer thickness
- Micro & Nano patterning

• New materials for more variations of ink formulations

Innovative Printing Technology Emerging

Organic Photonics Workshop, June 25, 2008, CIBA

Potential application

Ciba

Organic Photonics Workshop, June 25, 2008, CIBA

Automated Prober – TP10

Developped at CSEM

 $D_{tain,10}^{tain,10} P_{tain,10}^{tain,10} P_{tain,10}^{tain,10$

 $L = 4 \mu m$

L = 30 μm

Organic Photonics Workshop, June 25, 2008, CIBA

Organic Field Effect Transistors (OFET)

- Mobility of 0.1-0.3 cm²/Vs
- On/Off ratio up to 10⁷
- Threshold voltage close to 0

OFET properties of an interesting candidate

Organic Photonics Workshop, June 25, 2008, CIBA

Confidential

Ciba

Printable semiconducting polymer

- Mobility up to 10⁻¹ cm²/Vs
- On/Off ratio of 10⁶
- Threshold voltage close to 0

In Collaboration with the technical research center of Finland

Organic Photonics Workshop, June 25, 2008, CIBA

Organic Light Emitting Transistor (OLET)

- Balanced Charge carrier mobility
 - \rightarrow Ambipolarity
 - \rightarrow drop of the On/Off ratio

 Holes and electrons can be injected at the same time, meet and recombine radiatively in the channel

Organic Photonics Workshop, June 25, 2008, CIBA

Organic Light Emitting Transistor (OLET)

Organic Photonics Workshop, June 25, 2008, CIBA

Organic Bulk Heterojunction Solar Cells – Potential of Ciba polymers

- State of the art low band gap material is reaching now around 5.5%
- Potential of the Ciba polymer in the range of **12-14%** rr-P3HT

Collaboration with Prof. R. Janssen @ TU/e

Summary

- Novel class of photoresponsive materials uncovered
- Extremely high potential of Ciba proprietary polymers for solar cells
- State-of-the-art transistor performance have been obtained
- Scale-up of polymeric semiconductor ongoing
- Very promising also for other applications

