

LASER EQUIPMENT FOR MICROPROCESSING Appolo Workshop

Thomas Bewer
Head of Advanced Development

Burgdorf, 04.11.2015

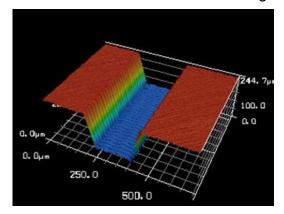
Laser application lab in Baar

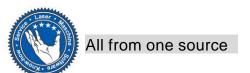
Service:

Supporting the development of your USP laser application at Baar

- Different laser work stations with pico and femto second lasers available.
- Inspection of part quality with high precision measurement systems possible.

DXF assisted contour inspection

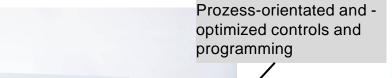

shown: tolerance $\pm 2 \mu m$ (green within tolerance)



3D Depth profile measurement

incl. measurement of surface roughness

TruLaser Cell 2000



Intelligent and patened change concept of the optic tray (<15min)

Flexible platform for micromachining

TruLaser Cell 2000

Free choice of optics, optional with vision-system

Flexible workholder

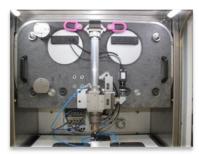
Isolated Prozess chamber

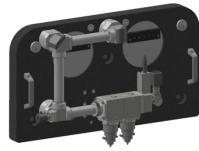
Integrated laser source and extraction system

X-Y-Table

High precision

Free choice of TRUMPFs ps and fs lasers


Granite construction for high precision

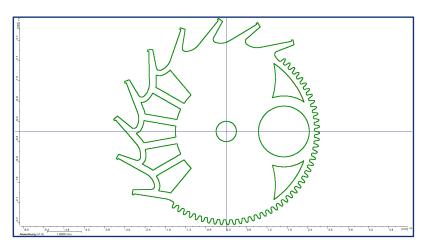

Examples of possible configurations

Fixed optic

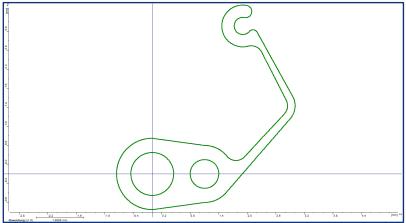
Ideal for fine cutting

Parallel fixed optics*

Ideal for parallel processing with fixed optics at higher laser power


* schematic

High precision cutting


TRUMPF

xy table has an accuracy of +-1 micron

Tolerance band ± 2 micron – green within tolerance

Examples of possible configurations

Fixed optics


Ideal for fine cutting

Scanner

Ideal for ablation processes, but also for cuting and drilling

Parallel fixed optics*

Ideal for parallel processing with fixed optics at higher laser power

Parallel scanner*

Ideal for parallel processing with scanner optics at higher laser power

TruLaser Cell 2000

Scanner & fixed optics

Ideal for fast change between scanner & fixed optics,
Wobble-processes

* schematic

Examples of possible configurations

Fixed optics

Ideal for fine cutting

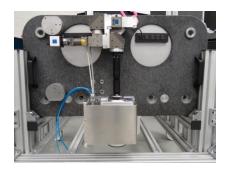
Parallel fixed optics

Ideal for parallel processing with fixed optics at higher laser power

Scanner

Ideal for ablation processes, but also for cuting and drilling

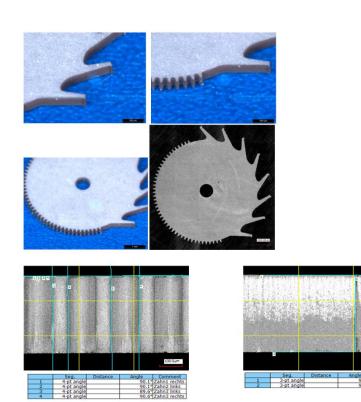
Parallel scanner


Ideal for parallel processing with scanner optics at higher laser power

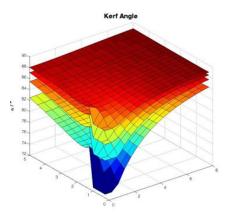
Scanner & fixed optics

Ideal for fast change between scanner & fixed optics, Wobble-processes

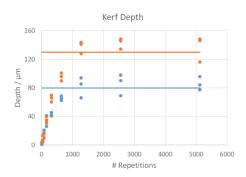
"Non Standard" Optics <u>Trepanning optic</u>



For drilling and cutting with highest demands regarding taper angle



CTI Project BFH, CSEM and TRUMPF – Focus on brittle-rigid materials Sapphire, Si, Si3N4



Kerf angles of 90 +-0.4° were achieved

Winkel ca. 90.4°

Models were developed that can predict kerf angles and curf width

Winkel ca. 90.1°

Examples of possible configurations

Fixed optics

Ideal for fine cutting

Parallel fixed optics

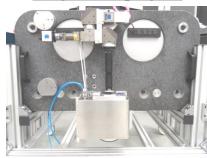
Ideal for parallel processing with fixed optics at higher laser power

Scanner

Ideal for ablation processes, but also for cuting and drilling

Parallel scanner

Ideal for parallel processing with scanner optics at higher laser power


Scanner & fixed optics

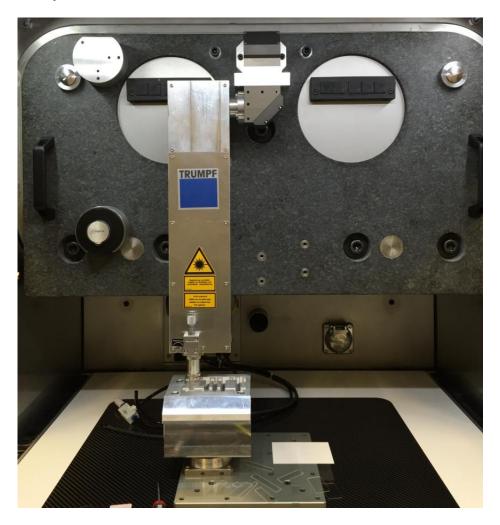
Ideal for fast change between scanner & fixed optics, Wobble-processes

"Non Standard" Optics

Trepanning optic

For drilling and cutting with highest demands regarding taper angle

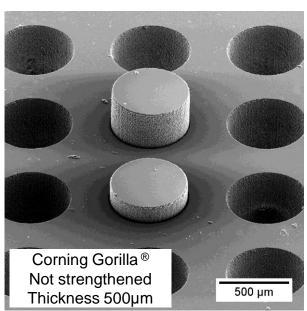
Top Cleave optic

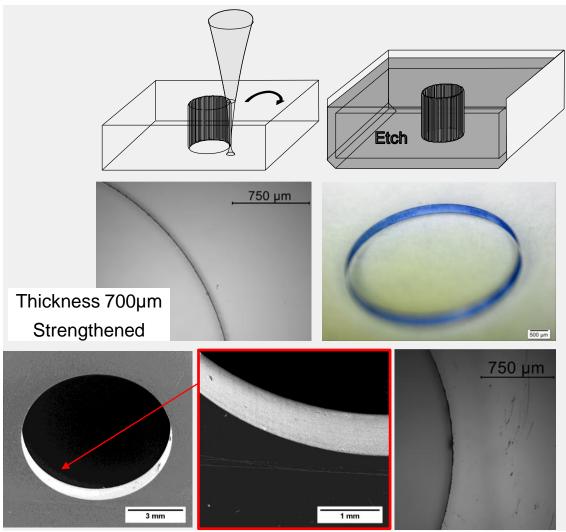


Fast cutting of transparent materials

Top Cleave

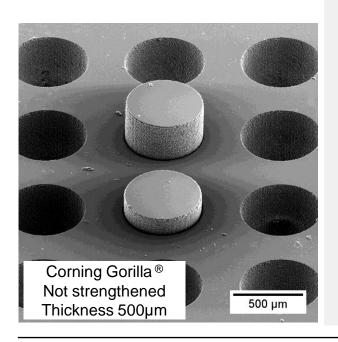
TRUMPF

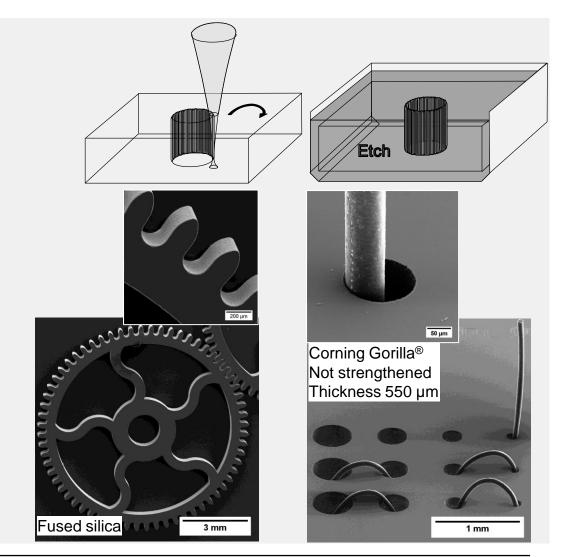

Fast cutting of transparent materials



Selective Laser Etching of Elongated Modifications

- Single pass modification by elongated beam shape
- Selective etching
- Separation
- Process benefits from beam shaping





Selective Laser Etching of Elongated Modifications

- Single pass modification by elongated beam shape
- Selective etching
- Separation
- Process benefits from beam shaping

TruLaser Cell 2000

TRUMPF

Flexible platform for micromachining processes

Fixed optics

Ideal for fine cutting

Scanner

Ideal for ablation processes, but also for cuting and drilling

Parallel fixed optics

Ideal for parallel processing with fixed optics at higher laser power

Parallel scanner

Ideal for parallel processing with scanner optics at higher laser power

"Non Standard" Optics

For drilling and cutting with highest demands regarding taper angle

Top Cleave optic

Fast cutting of transparent materials

Scanner & fixed optics

Ideal for fast change between scanner & fixed optics, Wobble-processes

more to come ...

TRUMPF Maschinen AG

YOUR CONTACT

Thomas Bewer
Head of Advanced Development
+41 41 769-6176
thomas.bewer@ch.trumpf.com