confidential



# Yield improvement in microlens imprint lithography (SMILE) by artificial intelligence

### **Reinhard Völkel**

CEO SUSS MicroOptics\*, Neuchâtel, Switzerland

Katrin Schindler, Isabel Agireen SUSS MicroTec, Garching, Germany

\*SUSS MicroOptics is part of the SUSS MicroTec group

**SUSS** MicroOptics

confidentia

### PHOTONICS-WORKSHOP: «ARTIFICIAL INTELLIGENCE IN PHOTONICS»

# PHOTONICS

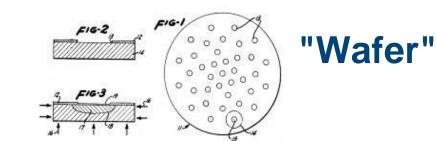
- + The term Photonics\* was introduced in 1967 by Pierre Aigrain (1924-2002), a French scientist. In 1973\* he claimed: "I believe, that tomorrow, that is to say in 1990, photonics will play an important part in the transmission of information ... Photonics is a technology of tomorrow."
- + Photonics was the compromise when classical optics industry merged with laser industry.
- Wikipedia 2019\*\*: "Photonics is the physical science of light (photon) generation, detection, and manipulation through emission, transmission, modulation, signal processing, switching, amplification, and sensing."
- Photonics market segments: LED, Lasers, Detectors, Sensors, Imaging, Displays, Optical Communication, Components, Media Technology, Lighting, Photovoltaics, …



**SUSS** MicroOptics

Pierre Aigrain (1924-2002)




#### confidential

# **SEMI**: Key to Success is Wafer Manufacturing

- **1947**: Invention of the transistor by John Bardeen, William B. Shockley and Walter H. Brattain (1956: Nobel Price)
- **1955**: Shockley Semiconductor Laboratory
- **1957**: The "Traitorous Eight" split from Shockley and start Fairchild Semiconductor: Robert Noyce, Gordon Moore, <u>Jean Hoerni</u>, Eugene Kleiner, Julius Blank, Sheldon Roberts, Jay Last, and Victor Grinich.
- **1959**: Jean Hoerni invents the "parallel process". Wafer manufacturing is the key to success for semiconductor industry!



Jean A. Hoerni (1924-1997)





6 µm - 1974

3 μm – 1977 1.5 μm – 1981

1 µm – 1984 800 nm – 1987

600 nm - 1990 350 nm - 1994 250 nm - 1996 180 nm - 1999 130 nm - 2001 90 nm - 2003 65 nm - 2005 45 nm - 2007

32 nm - 2009 22 nm - 2012 14 nm - 2014 10 nm - 2016 7 nm - 2018 5 nm - 2019

3 nm - ~2021

**SUSS** MicroOptics

### **PHOTONICS: DIGITAL OR PLANAR OPTICS**

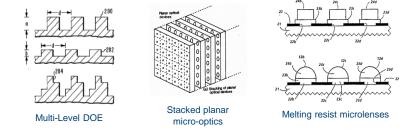
## **SUSS** MicroOptics

# **Computer Generated Holograms (CGH)**



Fig. 7.7. Adolf Lohmann (centre) with Byron Brown and Ronald Kay of IBM, c. 1966 (Lohmann collection)




Fig. 7.8. Computer-generated binary hologram and its reconstruction, Lohmann et al., 1967 (Lohmann collection)



Source: A. W. Lohmann

CALCOMP 565 Plotter

- + 1966 Digital or Planar Optics
- + 1977 Mike Gale: multi-level **diffractive optics**
- + 1982 Kenichi Iga: **stack**ed planar optics
- + 1985 Zoran Popovich: melting resist **microlens**es
- 1986 Adolf Lohmann\*: "Electronic Computers reached fundamental limits and can't get much faster anymore. We urgently need to get **Optical Computers**"





[\*] My first optics lecture on Nov 6th, 1986 at University of Erlangen Nürnberg

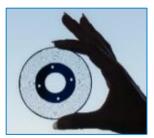
### SUSS MICROOPTICS – WE SET THE STANDARDS

#### confidential

- + World leading supplier of high-quality Micro-Optics
- + More than 200 active customers worldwide
- + We are part of **SUSS MicroTec** group



8" Wafer Cleanroom Fab






IATE 16949



**Microlens Array** 



**Nipkow Disk** 



**MO Exposure Optics** 

6

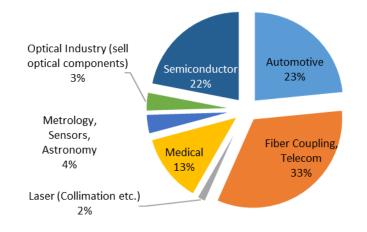
### **BUSINESS DEVELOPMENT**

Strong growth in Niche Markets

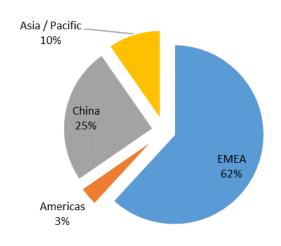
2012: New Cleanroom Fab @Innoparc I

confidential

÷


+

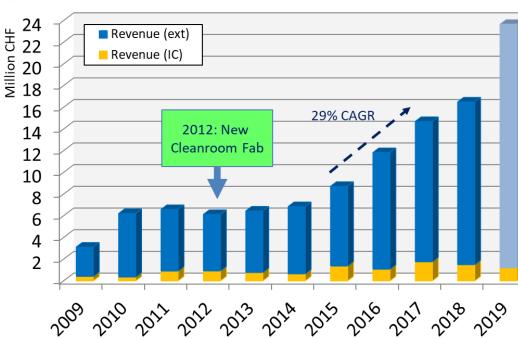
+


+



### Revenue by Market 2018








# 2018: New production line for Automotive Lighting 2019: 2<sup>nd</sup> Cleanroom Fab @Innoparc IV

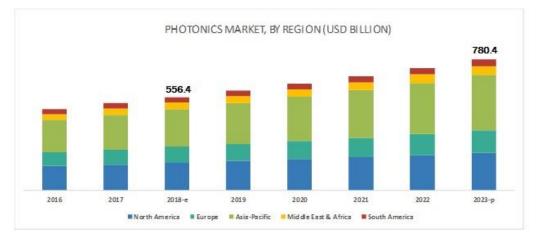
ATE 16949

Qualified Imprint P

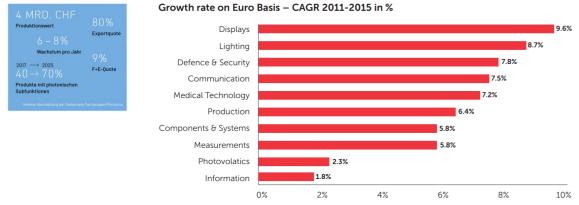


### REVENUE [CHF]

#### Reinhard Voelkel, SUSS MicroOptics SA, Switzerland


#### 7

### **SEMI VERSUS PHOTONICS**




#### confidential

- + Global semiconductor revenue was \$477\* billion in 2018
- + Global photonics revenue was \$556\*\* to \$640\*\*\* billion in 2018



#### Kennzahlen Photonik Schweiz 2017



| 2018<br>Rank |    | Vendor                     | 2018<br>Revenue | 2018<br>Market<br>Share (%) | 2017<br>Revenue | 2017-2018<br>Growth (%) |
|--------------|----|----------------------------|-----------------|-----------------------------|-----------------|-------------------------|
| 1            | 1  | Samsung<br>Electronics     | 75,854          | 15.9                        | 59,875          | 26.7                    |
| 2            | 2  | Intel                      | 65,862          | 13.8                        | 58,725          | 12.2                    |
| 3            | 3  | SK hynix                   | 36,433          | 7.6                         | 26,370          | 38.2                    |
| 4            | 4  | Micron<br>Technology       | 30,641          | 6.4                         | 22,895          | 33.8                    |
| 5            | 6  | Broadcom                   | 16,544          | 3.5                         | 15,405          | 7.4                     |
| 6            | 5  | Qualcomm                   | 15,380          | 3.2                         | 16,099          | -4.5                    |
| 7            | 7  | Texas<br>Instruments       | 14,767          | 3.1                         | 13,506          | 9.3                     |
| 8            | 9  | Western Digital            | 9,321           | 2.0                         | 9,159           | 1.8                     |
| 9            | 11 | ST<br>Microelectronics     | 9,276           | 1.9                         | 8,031           | 15.5                    |
| 10           | 10 | NXP<br>Semiconductors      | 9,010           | 1.9                         | 8,750           | 3.0                     |
|              |    | Top-10                     | 283,088         | 79.3                        | 238,815         | 18.5                    |
|              |    | Others<br>(outside top 10) | 193,605         | 20.7                        | 181,578         | 6.6                     |
|              |    | Total Market               | 476,693         | 100.0                       | 420,393         | 13.4                    |

Source: Gartner (January 2019)

[\*] https://www.gartner.com/en/newsroom/press-releases/2019-04-10 [\*\*] https://www.marketsandmarkets.com/Market-Reports/photonics-market-88194993.htm [\*\*\*] https://www.mordorintelligence.com/industry-reports/photonics-market-market

### **SEMI VERSUS PHOTONICS**





# What are the big differences between Photonics and Semiconductor Industry?

### **SEMI**

- Wafer-based manufacturing using Ø200mm and Ø300mm wafers
- + High degree of standardization and automatization
- Highly parallel manufacturing processes
- Standardized manufacturing equipment (\$65 billion annual spending)
- + Price reduction of 30% per year since 1960 for logic and memory

### **PHOTONICS**

- + Mostly manual processes and one-piece flow manufacturing
- + Fewer standardization and high diversity
- + Wafer-based manufacturing is < 15% of the global Photonics revenue
- + Often low automatization makes up-scaling a challenge



confidential



### THE NEXT BIG THING FOR SEMI IS ARTIFICIAL INTELLIGENCE

What does this mean for Photonics?

### THE NEXT BIG THING IS ARTIFICIAL INTELLIGENCE (AI)



confidential

### **Market Research Future\***

 "Global Artificial Intelligence (AI) chipset market will grow 2018 to 2023 at 31% CAGR and reach more than \$16 billion by 2023."


#### Forbes\*\*

+ "AI and machine learning have the potential to create an additional \$2.6T in value by 2020 in Marketing and Sales, and up to \$2T in manufacturing and supply chain planning."

#### Gartner\*\*\*

 Business value created by AI will reach \$3.9T in 2022.





AI chipset market growth by Market Research Future\*

#### Worldwide spending on cognitive and AI systems



[\*] https://www.marketresearchfuture.com/reports/artificial-intelligence-chipset-market-4987 [\*\*] http://Akihisa SEKIGUCHI, Tokyo Electron Limited talk at SEMI Taiwan IC Forum 2018 [\*\*\*] https://www.forbes.com/sites/louiscolumbus/2019/03/27

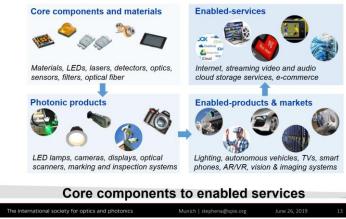
Artificial Intelligence Semiconductor Sales by TEL at SEMI Taiwan 2018\*\*\*

**SUSS** MicroOptics

confidentia

### IT THIS HYPE REAL? WHAT DOES IT MEAN FOR PHOTONICS?

# IS ARTIFICIAL INTELLIGENCE (AI) ALSO THE NEXT BIG THING FOR PHOTONICS?




#### confidential

- SEMI and Software will get the major part of the cake!
- + Classical Photonics companies will profit indirectly as AI will further generate the need for more
  - Sensors, cameras, LiDAR, metrology, …
  - Communication, fiber optics, optical switches, data center, …
  - Lasers, VCSEL, LED, displays, …
- + Production equipment for SEMI manufacturing (stepper, lithography, laser, ...)
- + Optical computing, quantum computers?
- + Low-hanging fruits: Yield improvement in wafer-based manufacturing for Semiconductor AND Photonics industry!

### **Photonics Value Chain**

SPIE.



#### **Domestic Photonics Production Germany 2016** in EUR billion mage Processing, Measurement Technologies 6.8 5.9 MedTech & Life Science 5.5 **Optical Components, Security/Defence Technologies Production Technology** 4.6 3.4 ICT, Displays Total 3.0 **Light Sources EUR 31 billion** Photovoltaics 1.7 Source: OPTECH CONSULTING 2017

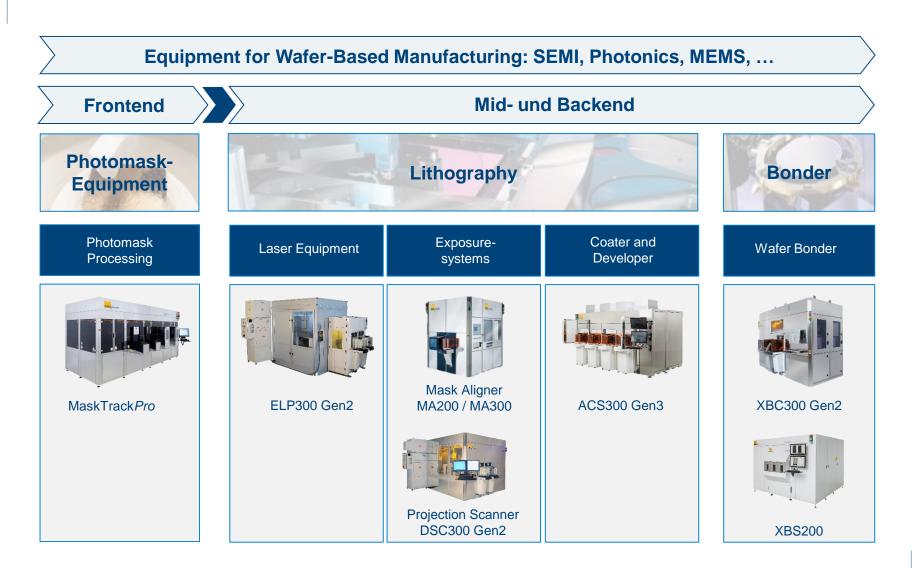
### IMPROVE YIELD IN SEMI AND PHOTONICS PRODUCTION

#### confidential

- + YIELD: "The proportion of devices on the wafer found to perform properly is referred to as the yield. Manufacturers are typically secretive about their yields, but it can be as low as 30%. Process variation is one among many reasons for low yield."
- + SEMI foundries use AI tools to combine equipment know-how and manufacturing statistics in managing massive Fault Detection (FD) data.
- Al enables the real-time collection and monitoring of massive amounts of processing data and alerts system administrators of any hardware failures or other manufacturing abnormalities.
- + Al also makes it possible to adopt **Run-to-Run** (R2R) control to automate **manufacturing process adjustments** and **corrections** by providing feedback that can drive higher processing efficiency.
- Supporting the customer to improve the yield in production is a MUST for all SEMI equipment manufacturers:

### + AI READY!

|    | 2017<br>Rank | Vendor                     | 2018<br>Revenue | 2018<br>Market<br>Share (%) | 2017<br>Revenue | 2017-2018<br>Growth (%) |
|----|--------------|----------------------------|-----------------|-----------------------------|-----------------|-------------------------|
| 1  | 1            | Samsung<br>Electronics     | 75,854          | 15.9                        | 59,875          | 26.7                    |
| 2  | 2            | Intel                      | 65,862          | 13.8                        | 58,725          | 12.2                    |
| 3  | 3            | SK hynix                   | 36,433          | 7.6                         | 26,370          | 38.2                    |
| 4  | 4            | Micron<br>Technology       | 30,641          | 6.4                         | 22,895          | 33.8                    |
| 5  | 6            | Broadcom                   | 16,544          | 3.5                         | 15,405          | 7.4                     |
| 6  | 5            | Qualcomm                   | 15,380          | 3.2                         | 16,099          | -4.5                    |
| 7  | 7            | Texas<br>Instruments       | 14,767          | 3.1                         | 13,506          | 9.3                     |
| 8  | 9            | Western Digital            | 9,321           | 2.0                         | 9,159           | 1.8                     |
| 9  | 11           | ST<br>Microelectronics     | 9,276           | 1.9                         | 8,031           | 15.5                    |
| 10 | 10           | NXP<br>Semiconductors      | 9,010           | 1.9                         | 8,750           | 3.0                     |
|    |              | Top-10                     | 283,088         | 79.3                        | 238,815         | 18.5                    |
|    |              | Others<br>(outside top 10) | 193,605         | 20.7                        | 181,578         | 6.6                     |
|    |              | Total Market               | 476,693         | 100.0                       | 420,393         | 13.4                    |


Source: Gartner (January 2019)



### **PRODUCT PORTFOLIO FOR SUSS MICROTEC**



confidential



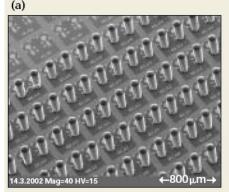
**SUSS** MicroOptics

confidentia

### MICROLENS IMPRINT LITHOGRAPHY AS AN EXAMPLE FOR ARTIFICIAL INTELLIGENCE IN PHOTONICS

Wafer-Level Photonics

### **1997 MICROLENS IMPRINT - SUSS MASK ALIGNER**


### **SUSS** MicroOptics

(b)

confidential

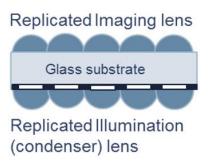
+ CSEM Zurich (Mike Gale)

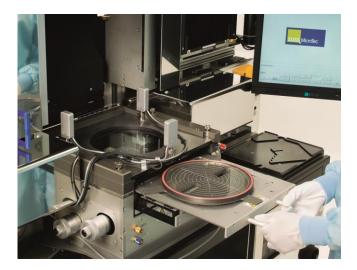






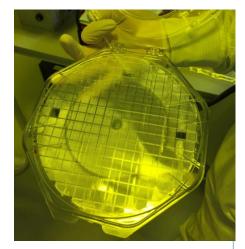
Polymer resin Substrate Mask holder Mold WEC enables precise gap ±1µm Chuck Alignment marks BSA, back side microscope Figure 6. Wafer scale UV embossing of sol-gel components. (a) and (b) Replicated sol-gel microlenses on a VCSEL device wafer. The lenslets couple light from the VCSEL into an optical fiber. [Courtesy of Avalon Photonics, Zurich, Switzerland.] (c) Replicated solgel alignment microstructures for optical components. [Courtesy of Leica Geosystems, Heerbrugq, Switzerland.]


M.T. Gale, "Replication," Chapter 6 in Micro-Optics: Elements, Systems and Applications, H.P. Herzig, Ed., Taylor and Francis, London (1997).


Brite-Euram Project BE97-464 1, DONDODEM, Development of new dielectric and optical materials and process-technologies for low cost electrical and/or optical packaging and testing of precompetitive demonstrators, (1998-2001).

### WELCOME LIGHT CARPET FOR CARS

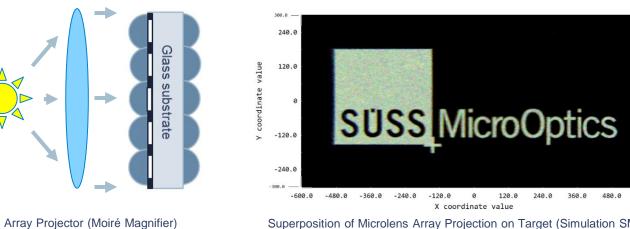
### **SUSS** MicroOptics



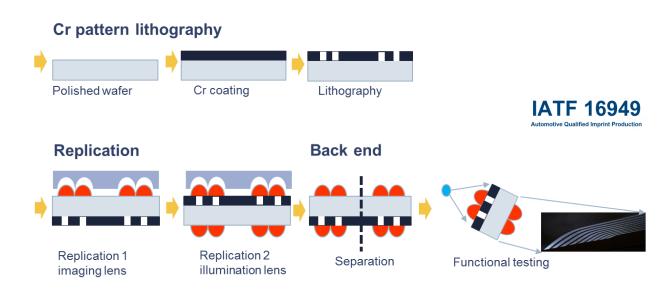


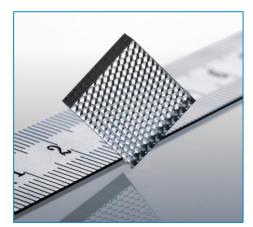








### **MICROLENS IMPRINT LITHO FOR LIGHT CARPETS**




600.0



Superposition of Microlens Array Projection on Target (Simulation SMO)





#### Microlens Array (MLA) for Light Carpets

### **QUALITY CONTROL FOR IMPRINTED MLA**

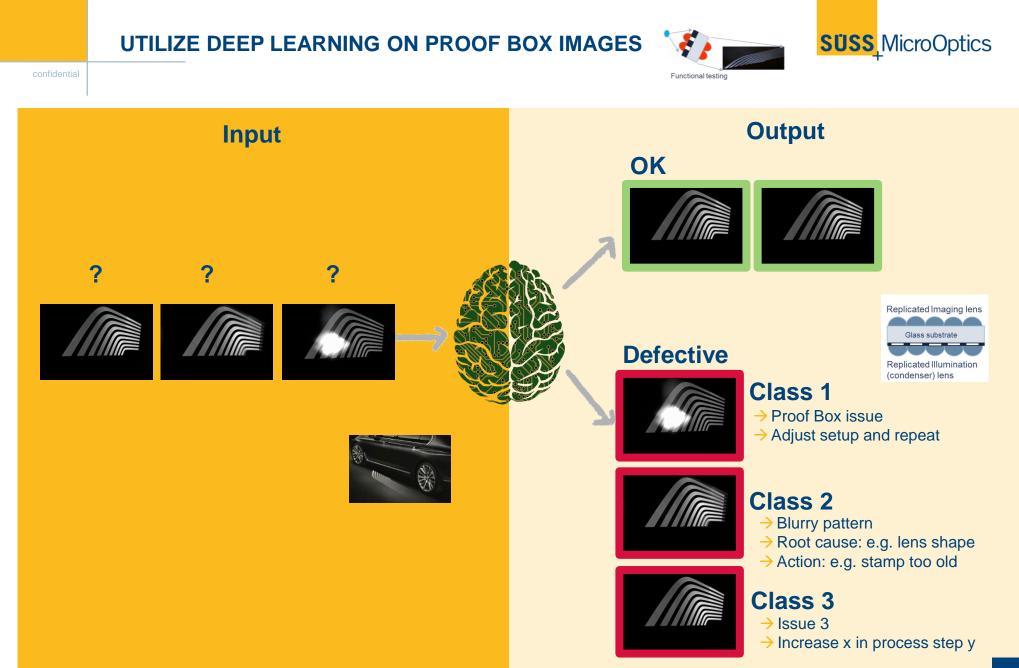


confidential

### + Classic rule-based sorting

### **Check Rule 1**




### Check Rule 2



### **Check Rule 3**







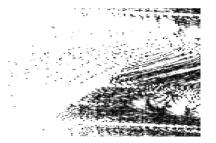
Reinhard Voelkel, SUSS MicroOptics SA, Switzerland

### **IMAGE SHARPNESS AS QUALITY FEATURE**



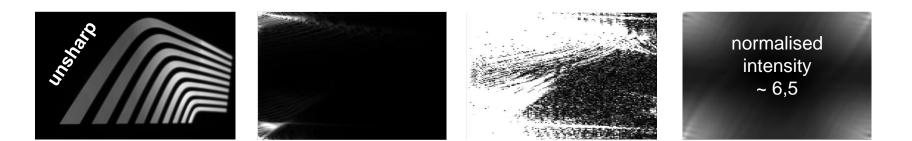
#### confidential

- + Sharpness measure via autocorrelation
- + Idea: Determine sharpness based in the full image with comparable values for each image


### **Original Image**



### FFT of the full image


Autocorrelation image





# RFT of the auto - correlated image

normalised intensity ~ 7



### **IMPROVE YIELD ON IMPRINT LITHOGRAPHY PROCESS**

**SUSS** MicroOptics

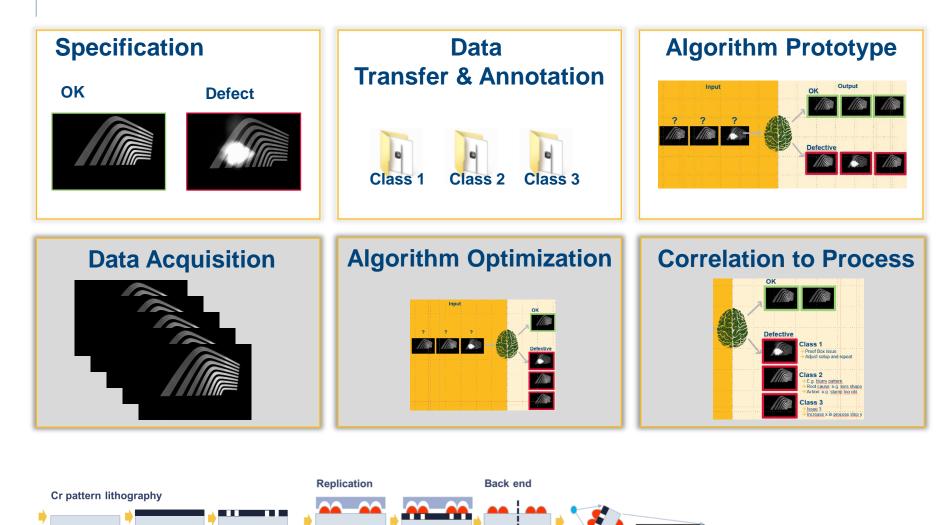
confidential

Polished wafer

Cr coating

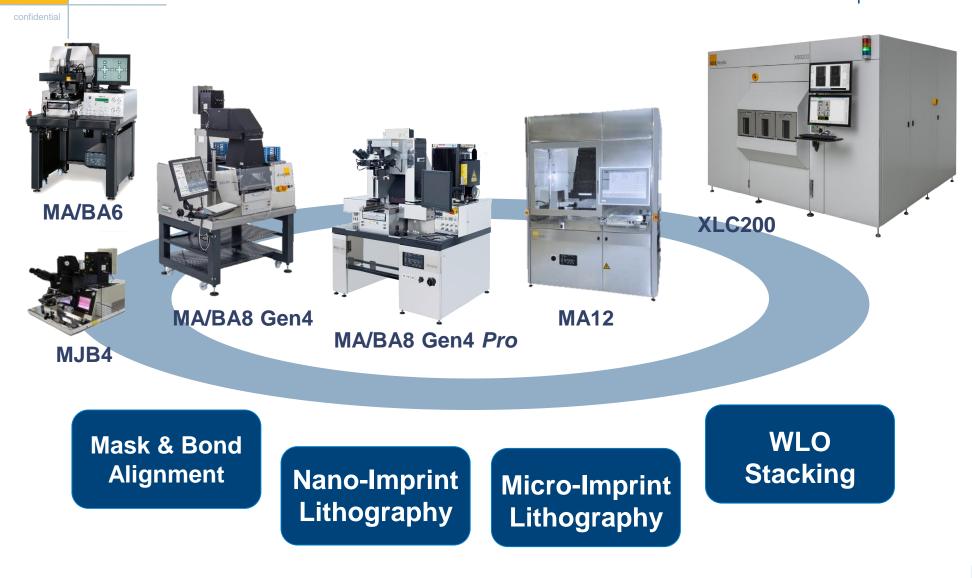
Lithography

Replication 1


imaging lens

Replication 2

illumination lens


Separation

Functional testing



### **EVOLUTION OF SUSS IMPRINT EQUIPMENT**

### **SUSS** MicroOptics





confidentia

Thank you

7-8 November 2019

EPIC Meeting on Wafer Level Optics at SUSS MicroOptics

Neuchatel, Switzerland

Registration open