

High power applications of the Laser MicroJet

Dr Alexandre Pauchard CTO Synova SA

Outline

- Company & products
- Laser MicroJet principle
- Example of high-power applications:
 - increase speed: cutting of solar cells
 - cut hard materials: CVD diamond, PCD/WC, CBN/WC, WC
- Cutting with high-power green and IR disc lasers
- Laser Chemical Processing
- Conclusion

Laser Stencil System (LSS)

Applications:

Working area: Accuracy: Repeatability: Speed: Acceleration:

stencils and OLED masks

630 mm x 850 mm +/- 5 μm +/- 2 μm 1000 mm / s 1 G

Cutting of stencils

Laser Cutting System (LCS)

Working area:	
Accuracy:	
Repeatability:	
Speed:	
Acceleration:	

150 mm x 150 mm +/- 5 μm +/- 2 μm 300 mm / s 0.5 G

Working area: Accuracy: Repeatability: Speed: Acceleration: 300 mm x 300 mm +/- 3 μm +/- 1 μm 1000 mm / s 2 G

Laser Cutting System (LCS)

Industries: watch, automotive, medical, tooling, ...

Laser Dicing System (LDS)

Applications: wafer dicing and grooving, edge isolation of solar cells, ...

240 mm

Working area:	240 mm x 24
Accuracy:	+/- 3 μm
Repeatability:	+/- 1 μm
Speed:	1000 mm / s
Acceleration:	2 G

Laser Dicing System (LDS)

Industries: solar, semiconductors, HBLEDs,

Hybrid Laser Saw (HLS)

- Based on Disco dual parallel spindle DFD6361 Fully Automatic Dicing Saw
- Performs loading, alignment, cutting, cleaning, drying and unloading fully automatically
- Wafer diameter up to Ø300 mm
- Cutting speed 0.1 600 mm/s

Hybrid Laser Saw (HLS)

Laser MicroJet Principle

- Water jet generated using small nozzles (20 – 160µm) and low water pressure (500 – 50bar)
- High-power pulsed laser beam focused into nozzle in water chamber
- Laser beam guided by total internal reflection to work piece
- Long working distance (>100 mm)

Laser MicroJet advantages

- Produces perfectly parallel kerf walls without focusing optics
- Achieves high aspect ratios
- Reduced HAZ as water cools cut edges between laser pulses
- Ablated material flushed clear of kerf
- No surface contamination or deposition due to presence of water film

Cutting of monocrystalline cells

Material:
Dimension:
Thickness:

SiNx / Si 156 x 156 mm² 180 - 230μm

	SYSTEM	Machine type	LDS 300	
	MICROJET [®]	Nozzle diameter	50	μm
	PARAMETER	MicroJet [®] diameter	45	μm
		Water pressure	250	bar
	LASER PARAMETER	Laser type	Q-switched YAG	
		Wavelength	532	nm
		Pulse frequency	50	kHz
		Average power	150	W
	CUTTING PARAMETER	Cutting speed	250	mm/s
		Number of passes	2	
		Overall speed	125	mm/s

Cutting of monocrystalline cells

Dark field, top view

Dark field, cross-section

Cutting of polycrystalline cells

Thickness:

180 - 300µm

	SYSTEM	Machine type	LCS 300	
	MICROJET [®]	Nozzle diameter	80	μm
	PARAMETER	MicroJet [®] diameter	72	μm
		Water pressure	125	bar
	LASER PARAMETER	Laser type	Q-switched YAG	
		Wavelength	532	nm
		Pulse frequency	50	kHz
		Average power	150	W
	CUTTING PARAMETER	Cutting speed	300	mm/s
		Number of passes	3	
		Overall speed	100	mm/s

Cutting of polycrystalline cells

Bright field, top view

Dark field, top view

Cutting of crystallized thin tubes

Crystallisation of thin tubes

- EFG: "Edge-defined Film-fed Growth"
- Feedstock: Granular silicon
- Drawing of thin tubes directly out of Si melt
- Tube length ca. 6,5 m, thickness 270 μm
- Tube geometries:
 - 8-corners and 12-corners (125 mm)

Oktagon 125 mm Dodekagon 125 mm

Crystallisation of thin tubes

Production of thin tubes

Dry laser cutting

Successive laser cutting of wafers out of each face of the tube
 Wafer dimensions: 125x125 mm² (5")

156x156 mm² (6") under development

- Pulsed solid state laser (Nd:YAG)
- Nozzle distance control required, process gas blows melt out of kerf
- Significant edge damage due to laser process and cutting speed
- Edge damage limits wafer strength; as-cut wafer strength ~ 40 MPa
 - → Removal of damage by separate etching necessary

Fusion cutting process

Cutting results

Wafer fracture strength

Wafer strength (4 point bending test): 120 - 150 MPa

- ⇒ Nearly damage-free edges, no edge etching necessary
- ⇒ 2.5 higher fracture strength compared to dry laser

Courtesy of Wacker Schott Solar

CVD diamond tipped insert cutting

Material: Thickness: Application:

CVD diamond 400µm conventional milling inserts, 20° relief angle

μm μm bar
μm μm bar
µm bar
bar
nm
kHz
W
mm/s
mm/mir

CVD diamond tipped insert cutting

PCD / WC insert cutting

Material: Thickness:

PCD/WC inserts 1.6 mm

	SYSTEM	Machine type	LCS300	
	MICROJET®	Nozzle diameter	80 μm	
	PARAMETER	MicroJet [®] diameter	64 μm	
		Water pressure	250 bar	
	LASER PARAMETER	Laser type	Double Nd:YAG	
		Wavelength	532 nm	
		Pulse frequency	14 <i>kHz</i>	
		Average power/laser	70 W	
		Total power	140 W	
	CUTTING PARAMETER	Linear acceleration	3000 <i>mm/s</i> ²	
		Scanning speed	25 <i>mm</i> /s	
		Number of passes	46	
		Cutting speed	28 mm/min	

PCD / WC insert cutting

Dark field, insert edge

Dark field, cross section

Edges are sharp and perfectly clean. No recast nor thermal effect.

CBN / WC disc cutting

5 mm thick CBN insert in WC disc through cut

λ: 532nm (dual cavity laser)Jet diameter: 66 μmCutting speed: 2.7 mm/min (220 passes)

Pulse Freq.	8	kHz
P average	140	W
Water Pres.	400	bar

Microscopic top view of front side of insert tip

Fast process, high aspect ratio, no burrs or particle contamination

CBN / WC disc cutting

1.5 mm thick CBN on 7 mm WC backing chamfered cut through

Sketch of cutting requirements

λ: 532nm (dual cavity laser)Jet diam: 66 μmCutting speed: 1.7 mm/min

Pulse Freq.	8	kHz
P average	140	W
Water Pres.	400	bar

1000um

Microscopic view of topside of CBN tip

Flexibility, high quality clean edges, no HAZ

WC rod cutting

Material: Thickness: Length:

pure WC rods 1.42 mm 5 mm

	SYSTEM	Machine type	ECS300
		Nozzle diameter	80 µm
	PARAMETER	MicroJet [®] diameter	72 μm
		Water pressure	350 bars
	LASER PARAMETER	Laser type	Q-switched YAG
		Wavelength	532 nm
		Pulse frequency	18 <i>kHz</i>
		Pulse sync delay	250 <i>ns</i>
		Average power	140 W
	CUTTING PARAMETER	Cutting speed	60 <i>mm/s</i>
		Number of passes	60
		Overall speed	50 mm/min

WC rod cutting

Bright field, side view

Dark field, side view

Bright field, top view

Thick WC cutting

Material:	WC		
Thickness:	5 mm		
	SYSTEM	Machine type	LCS300
	MICROJET [®] PARAMETER	Nozzle diameter MicroJet [®] diameter Water pressure	80 μm ~72 μm 300 bar
	LASER PARAMETER	Laser type Wavelength Pulse frequency	Dual Nd:YAG 532 <i>nm</i> 12 <i>kHz</i> 125 <i>W</i>
	CUTTING PARAMETER INNER CIRCLE	Scanning speed Number of scans Cutting speed	20 mm/s 200 5.5 mm/mi

Thick WC cutting

Dark field, front side

Dark field, back side

Dark field, back side

Dark field, cut side

High-power green disc laser

High-power green disc laser

Cutting of tool inserts (1.6mm) PCD (polycrystalline diamond, 0.2mm) and WC (tungsten carbide, 1.4mm).

Effective cutting speed = 30 mm/min (scanning speed = 60 mm/s) Laser rep rate = 14 kHz Average power = 132 W (100% diode current) 80 µm nozzle (70 µm jet diameter = kerf width)

High-power IR disc laser

High-power IR disc laser

(a) Absorption coecient of water at dierent wavelengths. (b) Calculated transmission after 2 cm travel in water jet at different wavelengths. (c) Experimental data confirming the low transmission for 1030 nm laser.

High-power IR disc laser

Optical microscopy images of a damaged nozzle at different magnifications

Issues at high power levels when using IR lasers:

- 1. Only a small fraction (30%) of the power is delivered to the work piece (expected)
- Nozzle damage due to cavitation effects above 350W (100 μm nozzle,10 kHz repetition rate). Laser absorption creates water vapour bubbles, which upon collapsing generate shock waves and high speed jets that damage the nozzle

Laser Chemical Processing

Idea from ISE*, based on Synova IP:

Start from water jet-guided laser technology; replace water by chemical jet

⇒ Laser Chemical Processing (LCP)

* Willeke, G.P. and D. Kray, A new route towards 50 µm thin crystalline silicon wafer solar cells Proceedings of the 17th European Photovoltaic Solar Energy Conference, 2001, Munich, Germany

40

Laser Chemical Processing

Applications :

- doping for selective emitter formation
- doping for LFC contact formation
- wafering

Wafering

Goal: slice mono and polycristalline ingots into wafers
Current technology: multi-wire slurry saw (300 wafers / hr)
Problem: 160µm wire ⇒ 200µm kerf ⇒ about 50% material loss

Wafering

Wafering

70 mm deep laser cut with a long pulse IR laser (Tumpf): P=260 W, v=85 Hz, τ =0,5 ms, w=1 mm/s and a 100 µm nozzle

42x45 mm² wafer cut with same laser

Comparison of Laser Chemical Processing and Laser MicroJet for structuring and cutting silicon substrates, Applied Physics A, H. Hopman et al, 01/2009

Wafering

	Average cutting speed S _{n exp} [µm/s]	Experimental cutting time for 100x10 mm ² T _{exp} [min]	Material removal rate (for single laser groove) <i>M</i> [mm ³ /s]	Cutting speed of first laser groove S _{1 exp} [µm/s]	Theoretical cutting time for 100x10 mm ² <i>T_{tc}</i> [min]
MWSS typical	~7,5				~22,2
1064 nm Spectron (3,5 mJ, 670 ns, 45 W)	17,8	9	0,42	61	3,2
532 nm Lee (12 mJ, 360 ns, 120 W)	42	4	0,7	68,6	2,4

laser-based wafering provides faster speed and improved surface quality

• Technique still requires massive parallelization to be competitive

Comparison of Laser Chemical Processing and Laser MicroJet for structuring and cutting silicon substrates, Applied Physics A, H. Hopman et al, 01/2009

Summary

Laser Microjet gives also excellent results at high power levels

Typical applications at high power: cutting of solar cells or hard materials

Advantages of using LMJ technology for hard material cutting:

- Higher throughput than standard diamond blades or electro erosion
- Superior quality to standard lasers; no burring, eliminating need for post processing
- Greater tool flexibility, able to cut all patterns
- Low operating costs, as there are no blades or cooling liquid
- Faster prototyping

Limitations at highest power levels are

- 1) Cavitation effects at 1030nm 1064nm
- 2) Thermal effects at 510 532nm

Contact

Dr Alexandre Pauchard CTO / Synova SA pauchard@synova.ch

Where others see impossibilities, we see solu tions

