EPFL aqualab

pissimaging

École polytechnique fédérale de Lausanne

04 December 2023

Introduction

Space environment studies

Applications

Conclusions

Wing-Lo Wu

EPFL Single-Photon Avalanche Diodes

- Reverse-biased P-N junction operating in Geiger-mode
- High avalanche gain allows single-photon sensitivity and particle detection

Ε

EPFL Imaging challenges in space

- Radiation environments
- Temperature fluctuation
- Extreme lighting conditions
 - Low light region
 - Low power resource
 - High contrast scenes

EPFL Imaging applications in space

 Space-based surveying: 2D intensity imaging, HDR (>100dB)

3D imaging / Material science for planetary exploration:
 LiDAR, Geo-mapping, Raman, LIBS, FLIM

• Applied quantum physics: Quantum communication, QRNG, QKD

Astronomy & Astrophysics

EPFL SPAD vs space/radiation applications

High speed HDR 2D imaging

 SPAD-based QRNG for Quantum communication

 High-energy physics: Particle tracking detectors

- 3D imaging and Material science:
- Object ranging, Raman spectroscopy, FLIM

• 4D Superluminal light-in-flight imaging

EPFL

Introduction

Space environment Studies

Applications

Conclusions

Ming-Lo Wu

EPFL Effect of Radiation on SPAD systems

Ionizing damage

Single-event effect

Non-ionizing damage

Radiation Handbook for Electronics, Texas Instrument

EPFL Radiation effect on SPADs: noise

DDD (TeV/g)

9

- Bigger SPAD \rightarrow Larger \triangle DCR
- Lower energy protons → Larger
 ΔDCR despite same DDD
- Slow ΔDCR increase at low fluence: lower damage probability

M.-L. Wu, E. Charbon, et al. 2022

1000

100

10

ΔDCR (cps/μm²)

EPFL SPAD noise vs Temperature

M.-L. Wu, E. Charbon, et al. 2022

EPFL Light vs SPAD: SNR & Dynamic range

High dynamic range!

	Conventional cameras	Single-photon cameras	
limit	full well capacity	number of binary frames	
response	linear nonlinear		
saturation	hard saturation	soft saturation	
high signal	noninvertible after reaching full well	invertible (Poisson statistic)	
low signal	limit by readout and excess noise	no readout and excess noise	

EPFL Accumulating binary images...

EPFL Dynamic range vs DCR

clock-driven single-photon camera

Higher frame rate/bit depth, lower noise \rightarrow Higher dynamic range dynamic range ~125 dB at 100,000 fps,1 sec exposure

Introduction

Space environment studies

Applications

Conclusions

EPFL HDR & High speed 2D imaging

A 3.3-Gb/s SPAD-Based Quantum Random Number Generator P. Keshavarzian, E. Charbon, et al. 2023

EPFL Quantum communication: Quantum random number generation

Modelling and design of CMOS SPAD sensors for quantum random number generation P. Keshavarzian

EPFL 3D imaging object ranging

Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications K. Morimoto, E. Charbon et al.

A 1024x8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS Y. Maruyama, E. Charbon et al.

Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation

V. Zickus, M.-L. Wu, E. Charbon et al.

EPFL 4D light in flight imaging with SPAD camera

K. Morimoto, M.-L. Wu, A. Ardelean & E. Charbon

EPFL **Radiation / MIP coincidence detection**

EPFL Radiation detection with SPAD: Timing performance

Normalized Δt (ps)

Detectors	Resolution _{best} (ps)	Time walk	Efficiency
PicoAD	$\sigma = 17.3$	yes	>99%
UFSD	$\sigma = 16^{a}$	yes	>99%
TIMESPOT	$\sigma = 11.5$	yes	$\sim 99\%$
This work	FWHM = 15.3	no	>99%
	(σ ~ 6.5)	•	•

G. lacobucci et al. 2022N. Cartiglia et al. 2017A. Lampis et al. 2023M.-L. Wu et al. 2023

EPFL **QUASAR: Resolving accretion disks with quantum optics**

- HBT Intensity interferometry
- SNR $\propto A_T * \sqrt{N_\lambda} / \sqrt{\tau_{detector}}$ A_T : telescope area N_{λ} : number of spectral channel $\tau_{detector}$: detector timing resolution

- Extremely Large Telescope (2027) x 10 ps SPTR SPAD
 - \rightarrow sub µarcsec resolution

Zürich^{⊍z⊦}

Introduction

Space environment studies

Applications

Conclusions

EPFL Summary & Conclusions

- Performance of SPAD-based systems in space environments has been studied:
 - Tolerant to high radiation environments
 - Lower DCR at low temperatures
 - More capable of capturing high dynamic range scenes than conventional cameras
- Demonstrated multiple low-light, high-speed, precise timing applications:
 - HDR 2D intensity imaging up to 100,000 fps
 - QRNG for quantum communication
 - 3D object ranging
 - Material science characterizations (LIBS, Raman, FLIM...)
 - 4D imaging for fast phenomenon tracking
 - Radiation / particle detection with sub 10 ps timing

EPFL SPAD-based systems

Point	Linear array	2D array
Point detection/scanning Photon counting Time tagging	Linear detection/scanning Spectral application Photon counting Time tagging/gating	Widefield detection Imaging application Photon counting Time gating

SPADs for space...space for SPADs?

28

Ming-Lo Wu

EPFLaqualab

Thank you!

EPFL

EPFL

29

pi 🎇 imaging

