

Label Free Imaging and Bioassays

Jean-Pierre Wolf

GAP-Biophotonics University of Geneva www.gap.unige.ch/biophotonics

SLN meeting – MUST – 25.11.11

BIOLOGICAL IMAGING

Beyond fluorescence

Nanoparticles that generate light through a mechanism known as second harmonic generation have been used to image live tissue. The particles overcome many problems associated with fluorescent probes for bioimaging.

23 SEPTEMBER 2010 | VOL 467 | NATURE | 407

- Nano-doublers
- Imaging
- Towards Label free Imaging: Coherent Control
- Perspectives

Second Harmonic Generation

must

Photo-Stability

Estimated SHG efficiency of 90 nm BaTiO₃: 2000-13000 GM

For comparison: QD: 47000 GM **GFP:** 75 GM Rhod 6G: 6 GM $(1 \text{ GM} = 10^{-50} \text{ cm}^4 \text{s/photon})$

$$W_{2P} = \boldsymbol{\sigma_{2P}} I^2$$

C-L Hsieh et al., Opt. Express 17(4), 2880 (2009)

Fluorescence Bleaching

Wavelength Flexibility

Breast cancer cells (MDA MB 231) - LiNbO₃ SHG coated with PEG

GapBio - unpublished

Wavelength Flexibility

GAP

Biophotonics

J. Extermann et al., Appl. Phys. B, 97, 537 (2009)

must

Tissue penetration

must

GAP

Cardiac Stem-Cells "Live" - 4D

KNbO₃ SHG coated with PEG

GAP Biophotonics Endo- and Exogenous Fluorescence

SELECTIVITY = CHEMICAL **PERTURBATION**

LABEL FREE CELL IMAGING AND DIAGNOSTICS

Solution for discrimination : COHERENT CONTROL ?

W. Webb et al, Science 305, 100 (2004)

must

Nearly Identical Cellular Biomolecules: Riboflavin and FMN

Optimal Discrimination (ODD)

must

GAP

Biophotonics

J.Petersen, R. Mitric, V.Bonacic-Koutecky, J.P. Wolf, J.Roslund, H. Rabitz, Phys.Rev.Lett 105, 073003 (2010)

Roth et al, Phys.Rev.Lett 102, 253001 (2009)

Relative Mixing Ratios Determination in the Mixture (same Cell)

	$\bar{c}^*(RBF)$	$\bar{c}^*(FMN)$	$c^*(RBF)$	$\sigma(RBF)$	$c^*(FMN)$	$\sigma(RBF)$
(a)	0.30	0.70	0.24	0.10	0.82	0.19
(b)	0.50	0.50	0.55	0.07	0.47	0.09
(c)	0.33	0.66	0.35	0.04	0.68	0.05

Roth et al, Phys.Rev.Lett 102, 253001 (2009)

The Amino-Acids

Peptidic Bonds between AAs make Proteins

Discrimination of Peptides

GapBio - unpublished

GAP

MEMS Laser Pulse Shaper (UniGe-IMT-EPFL)

S. M. Weber et al., Proc. SPIE7594, 75940J (2010)

Piston- and Tilt-Loop

 $0 \rightarrow 60 \text{ V}$ piston and tilt for two mirrors independently

White-Light Interferometry

0.50

0.00

Next Step: Label-Free Bio-Chips

« Label-Free Bioassays », US Patent, Pending (2011)

Conclusions

- Nano-doublers in strong development: FP7: characterized, fonctionalized, tested for toxicity, applied to actual cancer and stem cell research
- Collaboration with Nikon Microscopes
- Multimodality
- -Label free discrimination by Coherent Control demonstrated on peptides
- Imaging to be tested
- Label free immuno-assays, Patent
- Industrial interest (Innanovate, UK)

THANK YOU

Group Leader : Senior Scientists:

Post-Docs:

Biologist: PhD Students:

Engineer: Master Students:

J.P. Wolf J. Kasparian L. Bonacina A. Stepanov **F.** Courvoisier S. Weber J. Extermann P. Bejot M. Petrarca C. Kasparian A. Rondi S. Henin **D. Kiselev** T. Magouroux S. Afonina O. Nenandl M. Moret S. Courvoisier D. Mohit

COLLABORATIONS

IMT-EPFL Neuchatel H. Rabitz group, Princeton FP7: Namdiatream NCCR : MUST Consortium

THEORY V. Bonacic-Koutecky, HU Berlin R. Mitric, FU Berlin

Imaging through scattering tissues

Monte Carlo simulation Multiple scattering Mie theory

J. Extermann et al., Optics Express 17, 15347 (2009)

Polarization: nanoCompass

Model / laser excitation

V. Le Floc'h et al., J. Phys. Chem B 107, 12403 (2003)

Model / emission & detection

Crystal frame \rightarrow lab referential

$$\vec{\varepsilon}^{SHG} = \vec{k} \wedge (\vec{P}^{(2)} \wedge \vec{k})$$

Objective

$$\mathbf{B}\vec{\varepsilon}^{SHG} = \begin{bmatrix} B_{xxx} & B_{xyy} & B_{xxy} \\ B_{yxx} & B_{yyy} & B_{yxy} \\ B_{zxx} & B_{zyy} & B_{zxy} \end{bmatrix} \begin{bmatrix} E_x^2 \\ E_y^2 \\ E_x \\ E_y \end{bmatrix}$$

Integration over

$$b_{ijk} = \int_0^{2\pi} \int_0^{\theta_{obj}} B_{ijk} \sin u \, \mathrm{d}u \, \mathrm{d}v$$

$$I_{i=x,y}^{SHG} = b_{ixx}^2 \overline{E_x^4} + b_{iyy}^2 \overline{E_y^4} + 2 \oint_{ixx} b_{iyy} + b_{ixy}^2 \overline{E_x^2 E_y^2} + 2b_{ixx} b_{ixy} \overline{E_x^3 E_y} + 2b_{iyy} b_{ixy} \overline{E_x E_y^3}$$

V. Le Floc'h et al., J. Phys. Chem B 107, 12403 (2003)

θ,

a

X unit cell plane

CUC

Polarization: nanoCompass

 \rightarrow individual nanocrystal orientation \rightarrow probes for local *E* field

Polarization: nanoCompass

Name	Point Group		
LiNbO ₃	3m		
BBO	3m		
KTP	mm2		
$KNbO_3$	mm2		
$BaTiO_3$	4mm		
ZnO	6mm		
$Fe(IO_3)_3$	6		

Figure 3.4: Polarization emission for 3m crystals. .

Coherence

R. Baumner et al. submitted

Coherence

External Field Interference:

- Homodyne Detection (increase sensitivity) *Roch*
- Harmonic Holograpy (no scan axial position) *Psaltis*
- Digital Phase Conjugation (optical turbidity suppression) *Psaltis (June 2010)*

nano-FROG* (Self Referenced)

* Frequency Resolved Optical Gating

nano-FROG

J. Extermann et al., Optics Express 16,10405 (2008)

nano-FROG

J. Extermann et al., Optics Express 16,10405 (2008)

GAP Biophotonics – Uni Geneva J. Extermann, C. Kasparian, Prof J.-P. Wolf

SHRIMPs Second Harmonic Radiation IMaging Probes

(Inorganic) non-centrosymmetric nanoparticles

Since 2007:

Fe(IO₃)₃ (GAP Bio), KNbO₃ (Saykally, GB), KTP (Roch, GB), ZnO (Prasad, GB), BaTiO₃ (Psaltis)

Now SiC, BBO, LiNbO₃, and magnetic nanomaterials (MRI, NL)

NEW (MUST): Underlying Mechanism ab-initio Calculations (V. Bonacic Koutecky)

Shaped Pulse Excitation

M.Roth et al, App.Phys. B80, 441 (2005) M.Roth et al, Rev.Sci.Inst.77, 083107 (2006)

Field-Induced Surface-Hopping (FISH)

FMN Depletion with pulse 1 increases and with pulse 2 decreases

J.Petersen, R. Mitric, V.Bonacic-Koutecky, J.P. Wolf, J.Roslund, H. Rabitz, Phys.Rev.Lett 105, 073003 (2010)

Optimal Control Learning: Optimal Dynamic Discrimination (ODD)

Roth et al, Phys.Rev.Lett 102, 253001 (2009)

must

Peptide Bonds

Protein Synthesis

Spectra of Dipeptides

