Gas, Glass & Light: 25+ years of photonic crystal fibres

Philip Russell

MPL

Max Planck Institute for the science of light

Erlangen, Germany

© 2016 Philip Russell

26 years ago at CLEO-US

MAKING PCF

© 2016 Philip Russell PCF fabrication: Stacking & drawing

University of Bath Group in 2004

© 2016 Philip Russell

University of Bath 12th October 2004

THE FIRST PCF

© 2016 Philip Russell The first guiding photonic crystal fibre...

Knight et al: Opt. Lett. 21, 1547 (1996)

Max Planck Institute for the science of light

MPL

Modified total internal reflection

Knight et al, Electron.Lett. **31**, 1941 (1995)

© 2016 Philip Russell

...was endlessly single-mode

Birks et al: Opt. Lett. **22**, 961 (1997)

 fundamental mode cannot squeeze between air-holes

 higher-order modes can escape into cladding

MPL

10,000 TIMES BRIGHTER THAN THE SUN

University of Bath 2002

© 2016 Philip Russell Chromatic dispersion in waveguides

optical modes of hollow waveguides always have anomalous dispersion (geometrical effect) bulk glass or gas typically has normal dispersion (material response) dispersion of filled core combination is the balance of the two

© 2016 Philip Russell Ch Chramie tics plespiens iof 800 punccoitic & CF

Knight et al, Phot Tech Lett, **12**, 807 (2000)

Ranka et al: Opt. Lett. 25, 25 (2000) Dudley et al: Rev. Mod. Phys. 78, 1135 (2006)

© 2016 Philip Russell Deep-UV supercontinuum in ZBLAN PCF

Jiang et al: Nat. Phot. 9, 133 (2015)

Bright stable spectrum down to 200 nm wavelength

core diameter ~3 µm

1042 nm, 140 fs, 75 MHz, 13 nJ

FIBRES WITH NO CORE

Excerpt from a talk (by me) in late 1990s

"The first photonic crystal fibre was useless... ...because it needed defects"

November 1995

2 µm pitch

© 2016 Philip Russell Coreless PCF guides light when helically twisted

Beravat et al: Science Adv. 2, e1601421 (2016)

	1.26 rad/mm	2.86 rad/mm	π rad/mm
experiment			
	0000000	0000000	000000
simulation			
•••	\circ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

hole diameter 2.2 μm spacing 5.7 μm wavelength 818 nm

Max Planck Institute for the science of light

MPL

Twisted coreless PCF

Beravat et al: Science Adv. 2, e1601421 (2016)

Geometrical increase in path-length with radius:

WRITTEN BY BEN ROLLO

DIRECTED BY JEREMY LUTTER

HOLLOW CORE PCF

© 2016 Philip Russell Anti-resonant reflecting (ARR) hollow-core PCFs

- Benabid et al: Science **298**, 399 (2002)
- Pryamikov et al: Opt. Exp. **19**, 1441 (2011)
- Yu et al: Opt. Exp. 20, 11153 (2012)

- Debord et al: Opt. Lett. **39**, 6245 (2014)
- Uebel et al: Opt. Lett. **41**, 1961 (2016)
- Frosz et al: Phot. Res. **5**, 88 (2017)

- higher loss (~1 dB/m)
- ultra-broadband (1000s of nm)
- design of first layer critical

 nonlinear gas-light interactions enhanced >10,000 times c.f. focused Gaussian beam

MPL

© 2016 Philip Russell Guidance by antiresonant reflection in air 45% air filling fraction index contrast 1:1.46 C) 12 guidance by normalised frequency w//c anti-resonant reflection 20 µ 30 um core mode is anti-9 resonant with modes of PCF cladding capillaries in the ring 8 vacuum ß 6 10 11 12 7 8 9 6 normalised wavevector along fibre $\beta \Lambda$

© 2016 Philip Russell ARR HC-PCFs are not usually single-mode

Trabold et al: Opt. Lett. 39, 3736 (2014)

- Prism-coupling through the cladding
- Absence of PBG means that light can pass into core resonance
- Allows accurate measurement of modal phase indices and loss
- Modal field patterns can be imaged
- How to suppress higher order modes?

© 2016 Philip Russell

Bend loss in single-ring PCFs

Frosz et al: Phot. Res. 5, 88 (2017)

$$\frac{R_{\rm cr}^{01}}{D} = \frac{D^2}{\lambda^2} \frac{\pi^2}{u_{01}^2} \frac{\pi^2 (d/D)^2}{1 - d/D} \cos\theta$$

BRIGHT ULTRAVIOLET LIGHT

adnichtes picture

THE BLOOD WAR IS ON

ULTRAVIOLET

www.ultralumina.com

Portfolio of ultralumina's products & services

	What we do	Applications	
Optical Fibres	 Design Fabrication Characterization Hollow-core Photonic crystal fibres 	 High-power beam delivery fs beam delivery Low latency Gas-filled fibre-based light sources 	
Light Sources	 Deep UV supercontinuum Tunable deep UV MHz repetition rate, μJ energy, sub-50 fs lasers 	 Semiconductor metrology Time-resolved native fluorescence detection Advanced material processing 	
Services	ConsultingDevelopment projects	 Deep-level market & application understanding Evaluation of HC-PCF related business cases Fibre development & system integration 	

A supercontinuum light source for the deep UV

© 2016 Philip Russell Pressure-tunable dispersion in ARR-PCF

Reviews: PR et al: Nat. Phot. **8**, 278 (2014) Travers et al: JOSA B **28**, A11-A26 (2011)

for the science of light

• long well-controlled path-lengths

kagome

- broadband guidance (for few-cycle pulses)
- low light-glass overlap (high damage threshold)
- tunable low anomalous/normal dispersion

Tunability by varying pulse, fibre & gas

Mak et al: Opt. Exp. **21**, 10942 (2013)

1% to 8% conversion from near-IR to vacuum-UV

© 2016 Philip Russell **Tunable VUV dispersive wave emission**

Ermolov et al: Phys. Rev. A., 92, 033821 (2015)

IMPOSING MOLECULAR ORDER

Pressure-tunable from UV to IR

core diameter ~40 µm

© 2016 Philip Russell

0.37 800 zero dispersion 30 bar 700 0.43 read wavelength wavelength [µm] W_0 0.50 frequency [THz] 600 write 0.60 500 -write-write-0.75 400 W_{-1} -read-1.00 300 3 bar read 12 bar 200 1.50 3.00 100 2 10 1 100 0 $(\beta_{ref} - \beta)$ [mm⁻¹] pressure [bar]

Bauerschmidt et al: Optica **2**, 536–539 (2015)

Broad-band spectral up-conversion

© 2016 Philip Russell

Bauerschmidt et al: Optica **2**, 536–539 (2015)

LIGHT-DRIVEN MECHANICAL MOTION

© 2016 Philip Russell Flying (charged) particle microphone

Bykov et al: Nat. Phot. 9, 461 (2015)

At the keyboard: Maria Bykova Recording engineer: Dmitry Bykov

- noise caused by Brownian motion
- quality: not quite as good as a wax cylinder

Acknowledgements

Ringberg Castle, June 2017

www.pcfibre.com

