

Precision cutting and grooving with the Laser MicroJet

Dr Alexandre Pauchard CTO Synova SA, Switzerland

Outline

- Company Products Markets
- Laser MicroJet principle
- Selected applications
 - metal cutting
 - fuel injection nozzles
 - micro-springs
 - wafer dicing
 - laser doping of solar cells
- Conclusion

Company

EPMT 2010

Products

Markets

Laser MicroJet Principle

- Water jet generated using small nozzles (20 – 160μm) and low water pressure (100 – 300bar). The water jet is not cutting.
- High-power pulsed laser beam focused into nozzle in water chamber
- Laser beam guided by total internal reflection to work piece
- Long working distance (>100 mm)

Laser MicroJet Principle

Goal:

- direct and optimize fuel flow into combustion chamber
- high pressure to atomize fuel into spray
- dimensions: 180 260 μm, ± **2 μm**
- thickness 120 220 μm
- materials: stainless steel, AISI 440C (hard, resistant to wear and corrosion)

EPMT 2010

Drilled with LMJ

Cutting speed: 4 times higher with LMJ

Process: cut four 310 μm holes with 18° angle

Automation: 200 nozzles / hour

EPMT 2010

Cutting of micro-springs

Annealed stainless steel - 150µm thickness

No post cleaning treatment

Cutting of micro-springs

Cutting of micro-springs made of annealed stainless steel (150μm thickness)
Process parameters:

SYSTEM	Machine type	LCS300	
MICROJET [®] PARAMETER	Nozzle diameter	40	μm
	MicroJet® diameter	36	μm
	Water pressure	400	bar
	Assist gas	He	
LASER PARAMETER Peckholes	Laser type	L101IR	
	Wavelength	1064	nm
	Pulse frequency	1	kHz
	Laser Power %	100	%
	Pulse width	100	μs
1.000		0.5	
Lines	Pulse frequency	0.5	KHZ
	Laser Power %	/5	%
	Pulse width	60	μs
CUTTING PARAMETER	Scanning speed	1	mm/s
	Number of passes	1	
	Time / piece	260	S
	Fixture	clamped	

EPMT 2010

Cutting of micro-springs

Initial cut strategies resulted in a twisted spring. Optimization in cutting strategy allowed to eliminate built-in stress !

Hybrid Laser Saw (HLS)

- Based on Disco dual parallel spindle DFD6361 Fully Automatic Dicing Saw
- Performs loading, alignment, cutting, cleaning, drying and unloading fully automatically
- Wafer diameter up to Ø300 mm
- Cutting speed 0.1 600 mm/s

Hybrid Laser Saw (HLS)

EPMT 2010

Hybrid Laser Saw (HLS)

Cutting 600µm thick silicon wafer using saw followed by LMJ, cut in sequential passes

Dicing of thin wafers

Solar cells

High doping emitter layer necessary to obtain good ohmic contact to metallization

Standard solar cells: Uniform emitter doping introduced using diffusion furnaces

Consequence: N+ emitter over entire surface

Solar cells

Consequence of having N+ emitter over entire surface:

High surface recombination in blue response (photons with high absorption coefficient)

Solution: use of selective emitters

Deposit high doping layer only below metallic fingers, not between fingers

Different techniques to introduce selective emitters exist, some based on lasers

Laser Chemical Processing

Idea from ISE*, based on Synova IP:

Start from water jet-guided laser technology; replace water by chemical jet

⇒ Laser Chemical Processing (LCP)

* Willeke, G.P. and D. Kray, A new route towards 50 µm thin crystalline silicon wafer solar cells Proceedings of the 17th European Photovoltaic Solar Energy Conference, 2001, Munich, Germany

LCP-doping physical model

LCP-doping physical model

Step 3

- Vapor flume collapses
- Jet carries away debries
- Contact jet to surface reestablished

Step 4

- Carrier liquid decomposes thermally
- Liquid phase diffusion of dopant

LCP-doping physical model

Solar cell experiments

- Strong improvement of blue response using selective emitter by LCP-doping
- IQE close to 100% from 300nm to 900nm
- Dip around 1000nm due to non-optimized LFC process

Efficiency gain of 0.5 – 0.7% absolute

(e.g. efficiency increases from 17% to 17.5%)

Laser-doped Silicon Solar Cells by Laser Chemical Processing (LCP) exceeding 20% Efficiency, D. Kray et al, 33rd PVSEC, 2008.

Manual LCP machine

For R&D purposes Manual loading / unloading About 15' per wafer

Automated LCP machine

EPMT 2010

28

Automated LCP machine

Areas of application:

- local diffusion without thermal defects
- structuring combined with standard metallisation techniques
- structuring combined with self aligning electrolytic NiAg plating, NiCuAg plating in preparation
- single process for selective emitter or local BSF forming

Machine specification:

Process:				
Dimensions:				
Throughput:				
Wafer thicknes:				
H ₃ PO ₄ consumption:				
Power consumption:				

local SiN ablation and n⁺⁺ type diffusion $9500 \times 3500 - 4000 \times 2000 \text{ mm}$ (length x width x height) 1200 - 4800 wafers / h> $160\mu\text{m}$ 0.4 - 0.8 l/h30 - 50kW

Conclusion

Laser MicroJet technology is a versatile and cost-effective tool for precise cutting of

- Thin metals
- Semiconductors
- Hard materials
- Ceramics
- Diamonds

Extensions of the technology, like Laser Chemical Processing (LCP), opens up a whole range of new applications. Example: laser doping for introduction of selective emitters in solar cells

Contact

Dr Alexandre Pauchard CTO Synova SA pauchard@synova.ch

Where others see impossibilities, we see solutions

