Extreme precision laser micromachining with ps-pulses and synchronized beam delivery

Beat Neuenschwander^a, Beat Jaeggi^a, U. Hunziker^a, T. Meier^b, M. Zimmermann^b and G. Hennig^c

- Motivation
- Synchronization
- Experimental Results
- Conclusion

 ^aBern University of Applied Sciences, Institute for Applied Laser, Photonics & Surface Technologies ALPS, Pestalozzistrasse 20, CH-3400 Burgdorf, Switzerland
^bBern University of Applied Sciences, Institute for Mechatronic Systems IFMS, Pestalozzistrasse 20, CH-3400 Burgdorf, Switzerland
^cDaetwyler Graphics AG, Flugplatz, CH-3368 Bleienbach, Switzerland

"Hot" versus "cold" ablation

©1999 Clark-MXR, Inc.

3D Structuring: The "standard" process

The standard 2½-d process uses a galvo scanner and the 3d-structure is divided into several slices.

Each slice is filled with a pattern of parallel lines. From slice to slice the hatch pattern is turned around a given angle to avoid regular structures at the bottom.

Line start problem

Straight lines have to be generated with mechanical axes, the pulse train is switched on and off via an external modulator

"acceleration" problem

-well defined border -deep marking at borders Sky writing

- no deep marking
- diffuse border

Synchronized

- no deep marking
- well defined border

The first movement defines the location of the starting point

For the next movement you can:

- Shift the pulse train

Can be done for Q-Switched systems, but is a risky task for standard fs- and ps-systems in MOPA arrangement.

- Tune the axes movement on the pulse train needs adapted motion control

Standard laboratory setup with Intelliscan 14, RTC5 and DUETTO ps System:

Synchronized setup with additional FPGA Board:

Result:

Scan strategy

- Minimal surface roughness
- Best optical effect
- Different strategies

Scan strategy

Fix defined start positions

Random distribution of the start positions

Random distribution

- Uniform random distribution
- Normal random distribution

Best strategy: Start positions determined by a normal random distribution, with μ = 0, σ = pitch/4

Minimal surface roughness

Minimal surface roughness is about 90 nm and produced with a pitch of half of the spot radius.

pitch / µm

1

3

12

slices

13

120

1920

Steepness of wall / taper angle

Controlling	Steep taper angle	No deep marks
Laserdesk No Sky-Writing	x	
Laserdesk Sky-Writing		x
Synchronized System	x	х

Minimal structures

120 mW, 300 kHz, 1 μm pitch, 60 slices

120 mW, 300 kHz, 3 μm pitch, 60 slices

- Minimal web width: 3-5 μ m (~ $w_0/2$)
- Minimal side length: 6 μ m (~ w_0)

Examples of surface structures in copper

120 mW, 300 kHz, 3 μm pitch, 30 slices

120 mW, 300 kHz, 3 µm pitch, 30 slices

Surface Structuring: Working with gray scale bitmaps

120 mW, 300 kHz, 3 μm pitch, 100 slices

[1]: http://en.wikipedia.org/wiki/File:Tux.svg[2]: http://brettworks.com/2012/04/26/on-the-musicality-of-m-c-escher/

Surface Structuring: converting 3D data in bitmaps

[3]:http://www.swisstopo.admin.ch/internet/swisstopo/de/home.html

120 mW, 300 kHz, 3 μm pitch, 447 slices

Eiger, Mönch and Jungfrau

Ticino

Valais

Cutting of a spiral spring

Front side:

Back side:

No cleaning

Scaleability

 $\lambda = 532 \text{ nm}; \quad \phi_{th} = 0.11 \text{ J} / \text{cm}^2; \quad \delta = 6.7 \text{ nm}; \quad f_{obj} = 100 \text{ mm}; \quad w_0 = 6.65 \text{ } \mu\text{m}; \quad p = 3 \text{ } \mu\text{m};$

Scaleability

 $\lambda = 1064 \text{ nm}; \quad \phi_{th} = 0.3 \text{ J} / \text{cm}^2; \quad \delta = 31.8 \text{ nm}; \quad f_{obj} = 160 \text{ mm}; \quad w_0 = 16.3 \text{ \mum}; \quad p = 8 \text{ \mum};$

 $f_{rep} = 100 \ kHz$ $f_{rep} = 200 \ kHz$ $f_{rep} = 300 \ kHz$ $f_{rep} = 600 \ kHz$ $P_{av} = 925 \ mW$ $P_{av} = 1.85 \ W$ $P_{av} = 2.76 \ mW$ $P_{av} = 5.56 \ W$ $v = 0.8 \ m/s$ $v = 1.6 \ m/s$ $v = 2.4 \ m/s$ $v = 4.8 \ m/s$

No significant difference is observed -> the process is scalable

Conclusions

For real high precision surface structuring the synchronization of the mechanical axes with the laser pulse train is necessary. This was realized with a standard galvo-scanner and an additional FPGA-board.

The best scan strategy with the synchronized setup was found to be:

- Pitch of about $\frac{1}{2}$ w₀ (3 µm)
- Normal random distributed start positions with μ =0, σ =pitch/4

Results

- Minimal surface roughness of about 90nm
- Steep tape angle and no acceleration marks
- Minimal structure dimensions in the range of $\frac{1}{2}$ to $1 \cdot w_0$
- Process is scalable