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„Hot“ versus „cold“ ablation 

http://www.cmxr.com/Industrial/Handbook/Images/longpulse.swf
http://www.cmxr.com/Industrial/Handbook/Images/shortpulse-2.html
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5.3 mm 

Laser machined microstructures in Copper 
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Laser machined microstructures in Copper 

120 mm 

120 mW, 300 kHz, 3 µm pitch, 30 slices 

Ultra short laser pulses are really well suited for laser microprocessing. 
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Industrial suited ultra-short pulsed Systems 
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Industrial suited ultra-short pulsed Systems 
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Cost effective fiber based systems  
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Systems with shorter pulses 
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High power with short pulse duration 

1

10

100

1000

0.1 1 10 100

P
av

 /
 W

 

Dt / ps 

http://www.edge-wave.de/web/wp-content/uploads/2011/05/QX.jpg
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Optimization tasks 

Efficiency 

Maximize process efficiency 

Strategy 

Optimize the structuring strategy  

Throughput 

Use fast moving axes 

and use best suited pulse duration and synchronize axes with the laser  to obtain high throughput 
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Ablation Process 
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For ultra-short pulses it is assumed that the energy is deposited before the 

evaporation starts. The deposited energy is assumed to drop exponentially with 

the distance z to the surface. 
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Only a certain energy per unit volume, Emin, is needed to evaporate the material. 

This defines the ablation depth zabl. 

z a
b
l



÷
÷
ø

ö
ç
ç
è

æ


th

ablz



 ln

This will finally end up in the well known logarithmic ablation law. 

: Penetration depth 

th: Threshold Fluence 

: Fluence 
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Ablation Efficiency: Top Hat 
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The total energy corresponds to the area 

under the curve pc. 

But only a part, pu, is used to evaporate the 

material. 
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up

The remaining part, pl, is lost. 

 
lp

The efficiency of the ablation process can 

be defined by: 
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With a maximum value at              resulting in a maximum efficiency of  = 36.8%. e
th






The ablation depth and volume per pulse then read:  zabl =   and   D 2

0wV

For a Gaussian beam one obtains:  zabl,centre = 2  and again  D 2

0wV
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Varying the average power 
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Prepav EfP 

We can enlarge the average power by raising the pulse energy EP or the 

repetition rate of the system frep. 

What‘s the difference between these two possibilities. 

Varying the average power 
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We already know: 

 

At the optimum point the ablated volume 

per pulse reads DV = .w0
2.  

Hammer and Nail 
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Gaussian Beam: Volume ablation rate at constant average power  
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Volume ablation rate at constant average power 

Fitted: th = 0.3 J/cm2 ,   = 22 nm 

 

Good agreement between measured values and model. 
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Comparison of different situations 
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To prevent from conflicting results a comparison between different materials or 

systems should be done at the optimum points. 
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Its values are given by  the threshold fluence, th, and penetration depth, , 

which  have to be measured for the same number of pulses applied (incubation). 
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Varying the pulse duration 
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Copper: Ablation study (128 pulses) 

Threshold slightly decreases for pulses >10ps 

Rests almost constant for shorter pulse  

Increase of the energy penetration depth for IR        

513nm shows the same tendency for pulses 

shorter than 10ps 

Continuous grow of the maximum removal 

rate by reducing Dt 

Other metals show identical tendency. 
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saturate (blue line as guide to the eye). 
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Copper: Ablation study (128 pulses) 

0

0.1

0.2

0.3

0.4

0.5

0.1 1 10 100


th

/ 
J/

cm
2

Dt / ps

Threshold fluence

1064 nm

1026 nm

513 nm

532 nm

0

20

40

60

80

0.1 1 10 100


 /

 n
m

Dt / ps

Energy Penetration Depth

0

0.1

0.2

0.3

0.4

0.1 1 10 100

D
V

/D
t m

ax
/ 

m
m

3
/m

in
/W

Dt / ps

Maximum Removal Rate

0

0.1

0.2

0.3

0.4

0.1 1 10 100

D
V

/D
t m

ax
/ 

m
m

3
/m

in
/W

Dt / ps

Maximum Removal Rate

thav eP

V






2

max 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.1 1 10 100

D
V

/D
t 
/ 
m

m
3
/m

in
/W

Dt / ps

DV/Dtmax for Steel  @ 256 Pulses

SATSUMA

DUETTO 

Guide to the Eye



Bern University of Applied Sciences 

Institute for Applied Laser, Photonics and Surface Technologies ALPS 

Results: Polycrystalline Diamond PCD and Zirconium Oxide ZrO2 

Quite strong Influence of the pulse duration in 

the range of 50ps – 10ps.  

A small increase of the removal rate is still 

observed for pulses between 10ps and 2ps. 

For shorter pulses (2ps – 250fs) no significant 

change in the removal rate can be observed, 

also for 513nm. 

A similar behavior is observed (513nm and 

1026 nm) for ZrO2. 

But in contrast, for 343nm and low fluences 

the dependence of the removal rate on the 

pulse duration between 250fs and 1ps is 

strong. 
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Ablated squares in Soda-lime Glass 

Sharp edge changeover into a second 

regime with a much higher removal rate 

is observed. 

The “changeover pulse duration” 

depends on wavelength and peak 

fluence. 

After reaching its maximum value the 

removal rate continuously drops with 

increasing pulse duration. 
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Ablated squares in Soda-lime Glass 
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Optimization tasks 

Efficiency 

Maximize process efficiency 

Strategy 

Optimize the structuring strategy  

Throughput 

Use fast moving axes 

and use best suited pulse duration and synchronize axes with the laser  to obtain high throughput 
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The standard 2½-d process uses a galvo 

scanner and the 3d-structure is divided into 

several slices. 

From slice to slice the hatch pattern is turned 

around a given angle to avoid regular structures 

at the bottom. 

Each slice is filled with a pattern of parallel lines. 

3D Structuring: The „standard“ process 
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Line start problem 

Straight lines have to be generated with mechanical axes, the pulse train is 

switched on and off via an external modulator 

“acceleration” problem  Sky writing 

-well defined border 

-deep marking at borders 

- no deep marking 

- diffuse border 

Synchronized 

- no deep marking 

- well defined border 

Laser pulse train 

Axes movement The first movement defines the location of the 

starting point 
For the next movement you can: 

- Shift the pulse train 
Can be done for Q-Switched systems, but is 

not an easy task for standard fs- and ps-

systems in MOPA arrangement. 

- Tune the axes movement on the pulse train 

needs adapted motion control 
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Experimental Set Up 

• Industrial ps-Laser System DETTO, Dt =10ps,  

l = 1064nm and 532nm (SHG) 

• IntelliSCANde 14 scan head 

• Beam quality M2≤1.1, w0=16.3 µm and w0=5.7 µm (SHG) 

• Focal plane on the target surface 
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Scanner and Laser Control 

Standard laboratory setup with IntelliSCANde 14, RTC5 and DUETTO ps System: 
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Scanner and Laser Control 

Synchronized setup with additional FPGA Board: 
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Scanner and Laser Control 
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Pattern generation 

A rectangular region is formed by equally spaced parallel lines. 

The single pulses are individually switched on and off by an external modulator. 

-> the pattern can be described with a black and white bitmap file. 



Bern University of Applied Sciences 

Institute for Applied Laser, Photonics and Surface Technologies ALPS 

Black Pixels = Laser off 

White Pixels = Laser on Result: 

White Pixels Black Pixels 

120 mW, 300 kHz, 3 µm pitch, 100 slices 

Scanner and Laser Control 
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Surface structuring / „drilling on the fly“ 

120 mW, 300 kHz, 1 µm pitch, 100 slices 
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Scan strategy 

Best strategy: Start positions determined by a normal random 

distribution, with µ= 0, σ= pitch/4 

Fix defined start positions Random distribution of the start positions 

Random distribution 

• Uniform random distribution 

• Normal random distribution  
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Minimal surface roughness 

Minimal surface roughness is about 90 nm and produced with  

a pitch of half of the spot radius. 

pitch / µm # slices 

1 13 

3 120 

12 1920 
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Steepness of wall / taper angle 
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Minimal structures 

• Minimal web width: 3-5 mm (~ w0/2) 

• Minimal side length: 6 mm (~ w0) 

120 mW, 300 kHz, 1 µm pitch, 60 slices  

120 mW, 300 kHz, 3 µm pitch, 60 slices  

       Laserdesk Without sky-writing;   With sky-writing;             Synchronized 
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Surface Structuring: Working with gray scale bitmaps 

[1]: http://en.wikipedia.org/wiki/File:Tux.svg 

[2]: http://brettworks.com/2012/04/26/on-the-musicality-

of-m-c-escher/ 

120 mW, 300 kHz, 3 µm pitch, 100 slices 
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Surface Structuring: converting 3D data in bitmaps 

120 mW, 300 kHz, 3 µm pitch, 447 slices [3]:http://www.swisstopo.admin.ch/internet/swisstopo/de/home.html 

Eiger, Mönch and Jungfrau Ticino Valais 

5.3 mm 
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Optimization tasks 

Efficiency 

Maximize process efficiency 

Strategy 

Optimize the structuring strategy  

Throughput 

Use fast moving axes 

and use best suited pulse duration and synchronize axes with the laser  to obtain high throughput 
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Example: Lines (50 µm width) in stainless steel 1.4301 

Parameters: th = 0.08 J/cm2 ,    = 6 nm Spot radius: w0 = 25 mm 
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Example: 3d-structures in Copper 

Parameters: th = 0.3 J/cm2 ,    = 38 nm 
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For a spot diameter of  22 mm, a 

scanner optics of f = 100 mm has 
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For a marking speed of 1 m/s the 

average power is in the range of 

500 mW – 1.5 W 

For average powers of 10W and 

more the marking speeds 

exceeds 10 m/s. 

There is absolutely no scanning system on the market which can achieve these 

speeds with a resolution in the µm range i.e. one is not able to work at the optimum 

point with maximum ablation rates for average powers higher than a few Watts. 
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3 mm 

Scaleability 
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No significant difference is observed -> the process is scalable 

Next step: 

• Higher maximum scanner speed with new tuning 

->  frep > 1.8 MHz and Pav > 17W @ 1064nm 
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Alternative technologies 

Fast rotating mechanical axes: Accousto- and Electrooptic- Deflectors: 

S. Brüning, G.Hennig, S. Eiffel,  A.Gillner ; Proc. LIM 2011,  
Physics Procedia,  Elsevier (2011) 

http://idw-online.de/pages/de/news467826 
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Fast rotating cylinder 

WPMHzfmpmwnm avRep 9.0;3;2;4;532 0  mml

Rose: 1.1 x 1.25 mm TUX: 0.93 x 1.1 mm 
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Fast rotating cylinder 

180 mm 

1
4
4
 m

m
 

120 mm 

6
0
 m

m
 

WPMHzfmpmwnm avRep 6.0;2;2;4;532 0  mml

Next steps: 

• Go to IR and bigger spot radius 

->  frep up to 3 MHz and Pav up to 40W 
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Polygon Scanner 

next scan technology (Belgium) 
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Conclusions 

The efficiency of the ablation process shows an optimum for a certain applied 

fluence. At this point the maximum removal rate is obtained its value depend on 

the threshold fluence th and the penetration energy penetration depth .  

 Both measures depend on the pulse duration; shorter pulses lead to higher 

removal rates (metals and non metals). 

Synchronization of the mechanical axes with the laser pulse train and optimizing 

the scan strategy lead to an increased accuracy. 

Kilowatt laser micro processing with ultra short pulses is not so far away (see also 

next talk). 

High throughput can only be obtained when high marking speeds are possible. For 

this, new concepts have to be discussed and are under development. 

Mostly the optimum point is obtained at low fluencies i.e. at low pulse energies. 

High repetition rates are therefore needed at high average powers.  
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