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http://www.cmxr.com/Industrial/Handbook/Images/longpulse.swf
http://www.cmxr.com/Industrial/Handbook/Images/shortpulse-2.html
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EHT = 8.00 kV Signal A = SE2 Date :16 Aug 2011 BFH_TI
WD =47.5 mm Mag= 560X Reference Mag = Out Dev. Josef Zlrcher
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120 mW, 300 kHz, 3 um pitch, 30 slices
Ultra short laser pulses are really well suited for laser microprocessing.
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Industrial suited ultra-short pulsed Systems
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Industrial suited ultra-short pulsed Systems
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Cost effective fiber based systems
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High power with short pulse duration
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Optimization tasks

Efficiency Strategy Throughput
Maximize process efficiency Optimize the structuring strategy Use fast moving axes
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Ablation Process

| |
de L =< Tz =8 -In(iJ
W: — e&: . .(I)th
. ¢: Fluence
> \ :> 2 Oy Threshold Fluence ~—
g \\ 8: Penetration depth -
N A
5E N /
min /
N~
\.\\
Zap| 2 {} ¢

For ultra-short pulses it is assumed that the energy is deposited before the
evaporation starts. The deposited energy is assumed to drop exponentially with

the distance z to the surface.
Only a certain energy per unit volume, 6E,;, is needed to evaporate the material.

This defines the ablation depth z,.
This will finally end up in the well known logarithmic ablation law.
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The total energy corresponds to the area
under the curve p..

dE
dv—* But only a part, p,, is used to evaporate the

P material.

The remaining part, p,, is lost.

dE/dVv

u The efficiency of the ablation process can
be defined by:

M

S

]7: pu = pu
pc pu + pl

Zapi z

A short calculation shows that this efficiency is given by: 77 = O | In(ij

¢\

With a maximum value at 1A =€ resulting in a maximum efficiency of n = 36.8%.

Do

The ablation depth and volume per pulse then read: z,,,=6 and AV =7z-W; -8

For a Gaussian beam one obtains: ., ... = 26 and again AV =7z-W; -6
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Varying the average power
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av rep

S U T R N B

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

We can enlarge the average power by raising the pulse energy E; or the
repetition rate of the system f,,.

What's the difference between these two possibilities.
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Hammer and Nail

We already know:

At the optimum point the ablated volume
per pulse reads AV = 7w > o




Bern University of Applied Sciences

@ Institute for Applied Laser, Photonics and Surface Technologies ALPS

Gaussian Beam: Volume ablation rate at constant average power
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There exist an optimum repetition rate f,,, going with a maximum ablation rate.

At the optimum point the ablated volume per pulse reads AV = zwy> S
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Volume ablation rate at constant average power
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Good agreement between measured values and model.
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Comparison of different situations
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To prevent from conflicting results a comparison between different materials or
systems should be done at the optimum points.

Its values are given by the threshold fluence, ¢, and penetration depth, 4,
which have to be measured for the same number of pulses applied (incubation).
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Varying the pulse duration
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Copper: Ablation study (128 pulses)
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Copper: Ablation study (128 pulses)
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Results: Polycrystalline Diamond PCD and Zirconium Oxide ZrO,

Quite strong Influence of the pulse duration in
the range of 50ps — 10ps.

A small increase of the removal rate is still
observed for pulses between 10ps and 2ps.

For shorter pulses (2ps — 250fs) no significant
change in the removal rate can be observed,
also for 513nm.

Removal Rate for Ablated Squares in ZrO .. ] ]
03 — i A similar behavior is observed (513nm and
0s e s s i | 1026 nm) for ZrO,,.
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Ablated squares in Soda-lime Glass

Removal Rate for Ablated Squares
' . Sharp edge changeover into a second
i \ regime with a much higher removal rate
=i 1 S~ is observed.
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Ablated squares in Soda-lime Glass
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Optimization tasks
Efficiency Strategy Throughput

Maximize process efficiency Optimize the structuring strategy Use fast moving axes

Copper polished, 1064nm, P,, = 1W Taper angle
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3D Structuring: The ,,standard” process

The standard 2%2-d process uses a galvo
S scanner and the 3d-structure is divided into
several slices.
Each slice is filled with a pattern of parallel lines.
From slice to slice the hatch pattern is turned
around a given angle to avoid regular structures
at the bottom.
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Line start problem

Straight lines have to be generated with mechanical axes, the pulse train is
switched on and off via an external modulator

“acceleration” problem Sky writing Synchronized

-well defined border - no deep marking - no deep marking

-deep marking at borders - diffuse border - well defined border
Axes movement The first movement defines the location of the

starting point
For the next movement you can:

2% 5 - Shift the pulse train
25 I III Can be done for Q-Switched systems, but is
pail “I not an easy task for standard fs- and ps-
Laser pulse train systems in MOPA arrangement.
- Tune the axes movement on the pulse train
needs adapted motion control
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Experimental Set Up

* Industrial ps-Laser System DETTO, At =10ps,
A =1064nm and 532nm (SHG)

* InteliSCANde 14 scan head
- Beam quality M?<1.1, w,=16.3 pm and w,=5.7 um (SHG)
» Focal plane on the target surface

Various beam
Galvo-Scanner expander

N4 waveplate

=l e

Telecentric
f-theta objective

H Laser

Target
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Scanner and Laser Control

Standard laboratory setup with InteliSCANde 14, RTC5 and DUETTO ps System:

POD ON/OFF
— O » Laser
S8 | Controller
c 2 a---»
O h < >
. Head
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Scanner and Laser Control

Synchronized setup with additional FPGA Board:

Laser Pulse Signal

----------------------- ; - L
-----» FPGA Board aser
i - (Master)
" é‘ A 8 POD ON/OFF

A = —= - >
O © O = 7
c = ko Hl ©
Q5 51 & &
O @ = = -
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________________________ Board Head




oo 00 Bern University of Applied Sciences

...  |nstitute for Applied Laser, Photonics and Surface Technologies ALPS

Scanner and Laser Control

:
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Pattern generation
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-> the pattern can be described with a black and white bitmap file.
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Scanner and Laser Control

White Pixels = Laser on

Black Pixels = Laser off

Result:

White Pixels X 7' Black Pixels

2 [um)

30 A=1334.80 pmx pm, w=60.49 ym_, h=22.07 pm

20 +

T T T T T T T T
0 50 100 150 200 250 300 350 400
Distance (pm)

120 mW, 300 kHz, 3 um pitch, 100 slices
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EHT = 8.00kV Signal A= SE2 Date :13 Oct 2011
WD= 7.6 mm Mag= 10.00KX Reference Mag = Out Dev. Josef Zircher

120 mW, 300 kHz, 1 um pitch, 100 slices
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Scan strategy

Fix defined start positions Random distribution of the start positions
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Random distribution
 Uniform random distribution
« Normal random distribution

Best strategy: Start positions determined by a normal random
distribution, with p= 0, o= pitch/4
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Minimal surface roughness
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Minimal surface roughness is about 90 nm and produced with

a pitch of half of the spot radius.




Bern University of Applied Sciences

...  |nstitute for Applied Laser, Photonics and Surface Technologies ALPS

Steepness of wall / taper angle
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Minimal structures

Laserdesk Without sky-writing; With sky-writing;

Synchronized
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120 mW, 300 kHz, 1 um pitch, 60 slices

25 4
0 4 60 8 10 120 140 160 180 0 20 40 6 8 100 120 140 160 180
distance / pm

120 mW, 300 kHz, 3 pum pitch, 60 slices

0 4 6 8 100 120 140 160 180
distance / pm

* Minimal web width: 3-5 um (~ w,/2)
* Minimal side length: 6 um (~ wy)
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[1]A: http://en.W|k|ped|a.orglwiki/F|Ié:Tux.svg
[2]: http://brettworks.com/2012/04/26/on-the-musicality-
of-m-c-escher/



Bern University of Applied Sciences
@ Institute for Applied Laser, Photonics and Surface Technologies ALPS

200 pm EHT = 8.00 kV Signal A = SE2 Date 16 Aug 2011 BFH_TI
WD = 47.5 mm Mag= 50X Reference Mag = Out Dev. Josef Zarcher

120 mW, 300 kHz, 3 um pitch, 447 slices

A

100 ym EHT = 8.00kV Signal A = SE2 Date :16 Aug 2011 BFH_TI 100 pm EHT = 8.00 kV Signal A = SE2 D: 16 Aug 2011 BFH_TI
WD = 6.8 mm Mag = 400 X Reference Mag = Out Dev. Josef Zarcher | — WD = 6.8 mm Mag= 400X Reference Mag = Out Dev. Josef Zarcher

Date :16 Aug 2011 LTI
Mag= 1.00KX Reference Mag = Out Dev. Josef Zarcher

EHT = 800 kV
WD = 6.8 mm

Eiger, Monch and Jungfrau Ticino Valais
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Optimization tasks

Efficiency Strategy Throughput
Maximize process efficiency Optimize the structuring strategy Use fast moving axes
Copper polished, 1064nm, P,, = 1W Taper angle i

70 ® *
) . 60 B o & .A ¢ -
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10 (] L::::dz:k Swithv;::tlgkgy?\Zr:;:g option| |

’ 0 5 1‘0 1; Z‘O 2; 30

Zy [ M 7 5 B
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and use best suited pulse duration  and synchronize axes with the laser| to obtain high throughput

200 um EMT= 800KV Signal A = SE2 Date 16 Aug 2011 BFH_TI
= WD = 47 5 mm Mag= 50X Reference Mag = Out Dev.  Josef Zarcher
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Example: Lines (50 um width) in stainless steel 1.4301

Parameters: ¢4, =0.08 JJcm?, & =6nm Spot radius: w; = 25 um
Marking @ Maximum Removal rate V mm?®
500 X —0.12 —
—P=10W P min-W
{ 400 —P=50W |
£ P =100 W fop =1.7 MHZ @ 10W
S
B 300 foo = 4.3 MHz @ 25W (\/)
Q
(7s]
lén 200 — fopt = 86 MHZ @ SM
©
=100 \
O T T T T 1
0 0.2 0.4 0.6 0.8 1
Overlap

Marking speeds from a few 10 m/s up to the speed of sound are required. (\/)
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Example: 3d-structures in Copper

Parameters: ¢, =0.3J/cm?, =38 nm Spot radius: w, = 11 pm
250 25 . 3
/ Vo =0.2 r.nm
200 —25% Overlap 20 Pav min-W
L —50% Overlap
E 75% Overlap / For a spot diameter of 22 um, a
T 150 — Repetition Rate 15 & | scanner optics of f =100 mm has
e // / = to be used.
G =2
:g” 100 10 «¢ | For a marking speed of 1 m/s the
cE% /// average power is in the range of
50 : 500 MW -15W
/ For average powers of 10W and
0 - x x x y 0 more the marking speeds
0 20 40 60 80 100 exceeds 10 m/s.
P,/ W

There is absolutely no scanning system on the market which can achieve these
speeds with a resolution in the um range i.e. one is not able to work at the optimum
point with maximum ablation rates for average powers higher than a few Watts.
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Scaleability

A=1064nm; ¢ =03J/cm*; 5=31.8nm; fop; =160 mm;  w, =16.3 zm; p=8um;
fe, =100 kHz frep =200 kHz frep =300 kHz frep =600 kHZ
P, =925 mW P,=185W P, =276 mW P, =556W
v=0.8m/s v=1l6m/s v=24m/s v=4.8m/s

No significant difference is observed -> the process is scalable

Next step:
* Higher maximum scanner speed with new tuning
-> fiep > 1.8 MHZ and P,, > 17W @ 1064nm
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Alternative technologies

Fast rotating mechanical axes: Accousto- and Electrooptic- Deflectors:

.

AD DEFLEXION ANGLE RANGE

-
] 0 5 SEPARATION ANGLE

S. Briining, G.Hennig, S. Eiffel, A.Gillner ; Proc. LIM 2011,
Physics Procedia, Elsevier (2011)

MNote: &i and Be ane
wavelength dependant

Ancda

KTH crystal

Incidant light
lg Initial direction

Cathode Emerging light
Elaciron

http://idw-online.de/pages/de/news467826
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Fast rotating cylinder
Rose: 1.1 x 1.25 mm TUX: 0.93 x 1.1 mm

A=532nm; w,=4um; p=2um; f

=3MHz; P,,=09W

Rep
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A=532nm; w,=4,m; p=2um; f,, =2MHz; P, ,=06W

*

Next steps:
« Go to IR and bigger spot radius
-> fiep Up t0 3 MHz and P, up to 40W



Bern University of Applied Sciences
@ Institute for Applied Laser, Photonics and Surface Technologies ALPS

W,=11um @ A=532nm
W,=22um @ A=1064nm
o =170 mm

scan

V., =100m/s

next scan technology (Belgium)

,.
e i

Synchronized with FUEGO from
Time-Bandwidth Products AG
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Conclusions

The efficiency of the ablation process shows an optimum for a certain applied
fluence. At this point the maximum removal rate is obtained its value depend on
the threshold fluence ¢,, and the penetration energy penetration depth 6.

Both measures depend on the pulse duration; shorter pulses lead to higher
removal rates (metals and non metals).

Mostly the optimum point is obtained at low fluencies i.e. at low pulse energies.
High repetition rates are therefore needed at high average powers.

Synchronization of the mechanical axes with the laser pulse train and optimizing
the scan strategy lead to an increased accuracy.

High throughput can only be obtained when high marking speeds are possible. For
this, new concepts have to be discussed and are under development.

Kilowatt laser micro processing with ultra short pulses is not so far away (see also
next talk).
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