QCL: MIR light sources

A. Muller, CEO Alpes Lasers SA

S. Blaser, R. Terazzi, R. Maulini, A. Bismuto, T. Gresch, I. Sergachev, Y. Bideaux

Alpes QCL principles Properties

- General
- External cavity tuning
- Single mode tuning
 - Long pulses
 - Enhanced long pulses tuning

Conclusion

Design and production of QCLs

- Incorporated in 1998 in Neuchâtel
- High level scientific team (22 people)
- Total of 250+ years experiences in QCL design and manufacture
- Strong intellectual property protection (12 major patents in QCLs)
- Market leader of QCLs

Fabrication fabless model

Major universities and R&D Centres Industry, Spatial centres

Worldwide covering, distributors in EU, US, JP, CN

re.

2'400 QCLs sold all over the world over 15 years of existence.

QCLs : principles

Wavelength is function of the material

Wavelength is function of the geometry

N repetitions of a period 1 electron may generate N photons

An effective and efficient mid-infrared light source covering the mid-infrared (4 to 20 μ m) and terahertz waves (1 to 6 THz)

H				B				6			B		0-02-02-02-04
2	<u>.</u>	2	5	<u>n</u>	2	Z.	5	<u>س</u>	<u>24</u>	2	5	<u>n</u> ,	CONTRACTOR OF CONTRACT
		6								0			CONTRACTOR
BIX			B B	BR	SE .			BU	B		H	B⊠	
5			25	<u>10</u>		1	E.	UN.				(M)	CONTRACTOR
		88			66	66	8	66				65	NAME OF COMPANY
BIG				BB									CARACTERIA
		and a second	ZH			171	264		Fig	M	64	LTR.	A REPORT OF THE OWNER OF THE OWNE
													NAME OF CONTRACT
ENO		BP@	E COL	BRO		B B		BUG			BB	BZQ	TOPOLOGICALING

Properties

Single mode devices

- RT operation P & CW, I_{th}:30-500mA
- 1-10mW typ., up to 100's mW
- CW linewidth ~5MHz min <6Hz

Multi mode devices

- Pulsed line-width up to 450 cm⁻¹
- CW line-width up to 300 cm⁻¹

Gain measurements by Fourier transform analysis

Subthreshold gain measurements

Hofstetter et al. Photonics Technology Letters, (199

Measurements and simulations for increasing current densities: 0.9, 1.1, 1.3, 1.5, 1.7 kA/cm2

- Simulation based on density-matrix formalism
- Excellent agreement for gain dynamic range
- Global offset 4.4 cm-1
 process related losses
- Cladding absorption predicted
 - R. Terazi, Y. Bidaux

Application to broad gain devices

Application to broad gain devices

HOME PRODUCTS TECHNOLOGY LITERATURE CONTACT HELP CENTER

Broadgain Lasers

Lasers devices

ALPES

LASERS

List of DFB lasers in stock

Broad Gain Device

Fabry-Pérot Lasers

Discovery Lasers

Packaging Options

Accessories and Kits

Services

Туре	FP min	FP max	PEC-min	PEC-max	CWEC-min	CWEC-max
BG-10-12	780	1030	787	1042	-	-
BG-7.5-10.5	990	1280	960	1330	-	-
BG-8-10	995	1260	976	1283	1020	1235
BG-7-8	1190	1425	1096	1473	1150	1420
BG-6-7	1345	1660	1325	1680	1370	1635

These lasers are Fabry-Pérot lasers designed for maximum width of the gain profile. They can be used as broad spectrum illuminators for

spectroscopy or imaging. Combined with an anti-reflection coating, they are suitable for use in an external cavity to obtain a tunable

laser with wide tuning range. Their wide and flat gain spectrum can

Broadgain Lasers are available in well-defined bands defined below. Test data is available on delivery for the uncoated devices; for AR

also be suitable to develop frequency combs.

coated testing is done prior to coating.

• FP min and max: Limits of the multimode emission.

- PEC min and max: Observed limits of single mode pulsed emission in an external cavity.
- CWEC min and max: Observed limits of continuous emission in an external cavity.

ALPES Redesigned flat gain multi-stack QCL 1st version

Measurements and simulations for increasing current densities: 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 kA/cm2

- Agreement : gain dynamic range, absolute losses, gain bandwidth, peak gain
- Small gain modulation due to growth unknowns

ALPES Redesigned flat gain multi-stack QCL 2nd version

Measurements and simulations for increasing current densities: 1.25, 1.75, 2.25, 2.75, 3.25, 3.75 kA/cm².

ALPES Redesigned flat gain multi-stack QCL 3rd version

Application to broadband coating modal reflectivity

Study of broadband coating

 A minimum of reflectivity of 4*10⁻⁵ at 1250 cm⁻¹ has been measured.

Single mode tuning

Current [mA]

Dissipated electrical power [W]

ALPES Low-dissipation devices 5.26 μm

Threshold power : 0.31 W

Threshold current: 66 mAThreshold power: 0.55 W $P_{max} > 70$ mW / >3 dynamical range

~80 mW @RT / 40 mW @50C P_{el} max < 6.4W Single mode

~200 mW @RT / 140 mW @50C P_{el} max < 5.5W Single mode

ALPES Inter-pulse modulation

November 15, 2014 / Vol. 39, No. 22 / OPTICS LETTERS 6411

All-electrical frequency noise reduction and linewidth narrowing in quantum cascade lasers

Ilia Sergachev,^{1,*} Richard Maulini,¹ Alfredo Bismuto,¹ Stéphane Blaser,¹ Tobias Gresch,¹ Yves Bidaux,¹ Antoine Müller,¹ Stéphane Schilt,² and Thomas Südmeyer²

¹Alpes Lasers SA, 1-3 Max.-de-Meuron, CH-2001 Neuchâtel, Switzerland

²Laboratoire Temps-Fréquence, Institut de Physique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland *Corresponding author: ilia.sergachev@alpeslasers.ch

Electrical heater

- Fast
- Precise

Independent
ν & P_{opt.} tuning

Soon available

Up to 10 cm-1 electrical tuning using integrated microheater...

Come see us at PhWest: A. Bismuto, 8 Feb. (2:40pm), 11 Febr. (11:00am)

Comparison with T, I tuning

1.5 W output power at 4.9 μ m in HHL package R. Maulini

Availability

• CW: 4–12 μm, P: 3.3–23 μm

Line-width

- Narrow <5MHz, <100kHz actively
- Broad up to CW: 300 cm⁻¹, P: 450 cm⁻¹

Electrical tune-ability up to 7 cm⁻¹

www.alpeslasers.ch info@alpeslasers.ch