Vision algorithms on embedded platforms

Virginie Moser, CSEM, Vision embedded systems Swissphotonics workshop, Neuchâtel, 4th February 2016

Why embedded vision ?

- Infinite number of applications
- Decision making
 - Recognition
- To be everywhere, vision needs to be :
 - Low cost
 - Low power
 - Small / light
- Fast algorithms

Embedded vision at CSEM

- VIP: Vision In Package
 - Smallest vision system able to run a standalone vision application
- Algorithms and demonstrators
 - People and car detection (CNN)
 - Gesture recognition (Boosting)

CSem

VIP: Vision in package

- Smallest vision system
 - Able to run a standalone vision application
- Hardware:
 - Imager Aptina MT9V024 (752x480)
 - Cortex M4F 180-MHz
 - 64MBytes of SDRam

- Operating system:
 - uKOS RTOS

Supervised learning (CNN, Boosting)

- Subset of machine learning based algorithm
 - Need labelled database
 - Images with their label (sample)
- Optical character recognition
 - **O I 2 3 4 5 6 7 8 9** X 0 1 2 3 4 5 6 7 8 9 Negative
- People detection Negative sample
 Positive samples

Supervised learning principle

Convolutional Neural Network (CNN)

CNN Training phase (off-line)

CNN Execution phase (on-line)

CNN speed optimization

- Number of layers and sub-layers
 - Visualization of computed kernel weights
 - Remove useless sublayers

- Implementation optimization
 - Merge convolution and subsampling
 - Recognition rate only slightly affected

CNN : Advantages / drawbacks

- Advantages
 - Fast
 - Very good reliability
 - Few memory usage
 - Can detect the object on bigger image
- Drawbacks (off-line)
 - Need a lot of representative labelled data
 - Training phase

Boosting algorithm : Training principle

- Based on user-defined features
 - For example Haar features
- Algorithm computes the best combination of features
 Weak classifier (~8 features)

- One weak classifier computed at each iteration
- At each iteration, focuses on misclassified samples
- Strong classifier
 - Combination of all weak classifiers (few hundreds)

Boosting algorithm: illustration

Cascade of classifiers

Copyright 2015 CSEM | Vision embedded systems | Moser Virginie | Page 13

Boosting: execution optimization

- At execution, the whole cascade does not need to be executed
 - Decision can be made after first weak classifier

• Important speed up especially for real world images where the majority of the image does not contain the searched object

Boosting : Advantages / drawbacks

- Advantages
 - Extremely fast
 - Good reliability
 - Few memory usage

- Drawbacks (off-line)
 - Need a lot of representative labelled data
 - Training phase

- Use Boosting to perform a quick detection
 - Determine Region of Interest (ROI)
- Use CNN to affine the recognition
- The labelling burden can be reduced by:
 - Using existing databases
 - Developing a tool for auto-labelling
 - Use the availability of negative samples
 - Add noise and deformation to positive samples

Demonstrator: People and car detection

- Manage traffic lights at cross-roads
 - Detect pedestrians (adults, children but not animals)
 - Detect cars (all types, buses, but not pedestrians nor animals)
- Model with Playmobils, toys car

Demonstrator: People and car detection

- Performances of CNN on VIP
 - Car detection (120x120 pixels): 1/2 second
 - Pedestrian detection (200x100 pixels): ¹/₂ second
 - Memory usage: 65 Kbytes
 - Labelling needs for recognition rate > 99%
 - 700 images for pedestrians
 - 250 images for cars

Video: people and car detection

Demonstrator: Gesture recognition

• Classify 6 different hand gestures with Boosting

The dataset is taken from the work of Song et al., "In-air Gestures Around Unmodified Mobile Devices", 2014.

Demonstrator: Gesture recognition

- Performance of Boosting on VIP
 - Gesture classification: 100ms
 - Memory usage: 3 Mbytes (2'000 weak classifiers)
 - Labelling needs for recognition rate > 99%
 - 16'000 images

Video: Gesture recognition

Copyright 2015 CSEM | Vision embedded systems | Moser Virginie | Page 22

Questions ?

Come and Play !

See our demonstrator in Show Room !

