

3D TOF Imaging in Underwater Settings

Hannes Merbold, Gion-Pol Catregn, and Tobias Leutenegger

University of Applied Sciences HTW Chur

swissuniversities

FHO Fachhochschule Ostschweiz

graub Inden Bildung und Forschung

Introduction to TOF range imaging

- TOF (= Time Of Flight) cameras illuminate objects with pulsed IR LEDs
- Light pulses are reflected at objects and imaged onto the camera chip
- Each pixel records intensity and time difference Δt between emitted and reflected light pulse.
- Object distance can be determined through $L = \frac{c \cdot \Delta t}{2}$

HTW Chur

Image sources: Ineltro; http://www.mariofrank.net/3dcameras.html; https://en.wikipedia.org/wiki/Time-of-flight_camera

Projetct goal and motivation

- Project goal is to optimize TOF cameras for underwater range imaging.
- Motivation: Monitoring motion cycles of rehabilitation patients on underwater training bikes.

What is the difficulty?

• TOF Kameras use IR LEDs at 850 nm where water is strongly absorbing.

Wave- length	L ₉₉ distance	Attenuation after 2 x 1 m
850 nm	1.0 m	0.017%
800 nm	2.3 m	1.97 %
650 nm	14.5 m	53.0%
450 nm	161.7 m	94.4 %

Our approach

- Based on Espros epc660 evaluation kit.
- Populated seven illumination boards with different LEDs spanning the range from 450 to 850 nm.

Experimental Setup

Electromechanical fish

aquarium with 1.5 m length

TOF camera

Proof-of-concept

We compare the attainable performance of underwater TOF range imaging at 850 nm and 640 nm.

Proof-of-concept: near-IR light at 850 nm

Proof-of-concept: red light at 640 nm

Amplitude versus set distance

• TOF amplitude determined for different object distances *L* in water and different illumination colors.

Amplitude versus set distance

• TOF amplitude determined for different object distances *L* in water and different illumination colors.

HTW Chur

green

Output distance versus set distance

- Output distance as determined by TOF camera was plotted versus set distance.
- Offset observed is attributed to rise times of LEDs
- Deviation from unity line accoring to $c = c_0/n$.

Other hurdles

• Protective agents (to prevent growth of algae and bacteria) impact transmission.

• Negligible impact of chlorine, e.g., in pool water.

Water-proof casing

Summary

- Underwater TOF range imaging with object distances on the meter level can be realized, if visible rather than near-IR LEDs are used.
- Strongest amplitudes are obtained using red light at 640 nm. This is explained by interplay between absorption of water, optical LED power, and spectral chip sensitivity.
- Fast LEDs required and rise times need to be taken into account.

Summary

- Underwater TOF range imaging with object distances on the meter level can be realized, if visible rather than near-IR LEDs are used.
- Strongest amplitudes are obtained using red light at 640 nm. This is explained by interplay between absorption of water, optical LED power, and spectral chip sensitivity.
- Fast LEDs required and rise times need to be taken into account.

Thank you for your attention

hannes.merbold@htchur.ch

Thank you for your attention

hannes.merbold@htchur.ch

swissuniversities

FHO Fachhochschule Ostschweiz

graubynden Bildung und Forschung