

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Rafael Abela

The SwissFEL X-ray Laser Project at PSI: Challenges and Opportunities

3rd gen. synchrotron

fine, slow

optical lasers

fast, coarse

SwissFEL fine **and** fast at extreme high intensity

new direct insights into chemical, physical, biological mechanisms governing our daily-life

- 1. Short wavelength (0.1nm): atomic resolution
- 2. Short pulses (<20 fs 2 fs): time-resolved measurements,

avoid radiation damage

- *3. Coherence*: lensless imaging
- *4. High brilliance*: short (single-pulse "shot by shot") measurements

FEL Basic Design

$$\lambda = \frac{\lambda_U}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

$$\varepsilon_N \approx \gamma \frac{\lambda}{4\pi}$$

$$N_{
m f} \propto \gamma$$

The SwissFEL

- hv: Mg L-edge (50 eV) ⁵⁷Fe Mössbauer resonance (14.4 keV)
- Soft X-rays: circular polarization, transform-limited (seeding)
- Hard X-rays: 5-20 fs (low-charge mode)
- Synchronized THz pump source
- 100 Hz repetition rate \Rightarrow condensed matter applications

Photocathode Laser Requirements for SwissFEL

Gun Laser specifications				
Maximum pulse energy on cathode	up to 30 μJ			
Central wavelength	250-300 nm			
Bandwidth (FWHM)	1-2 nm			
Pulse repetition rate	100 Hz			
Double-pulse operation	yes			
Delay between double pulses	50 ns			
Laser spot size on cathode (rms) (10 pC / 200 pC)	0.1 / 0.27 mm			
Minimum pulse rise-time	< 0.7 ps			
Pulse duration (FWHM)	3-10 ps			
Longitudinal intensity profile	flattop			
Transverse intensity profile	flattop			
Laser-to-RF phase jitter on cathode (rms)	<10 fs			
UV pulse energy fluctuation	< 0.5% rms			
Pointing stability on cathode	<3 µm			

Photocathode Laser Requirements for SwissFEL

must

experiment

SwissFEL Synchronisation System

FEL Subsysteme benötigen Referenzsignal mit extrem stabiler Phase

Hybrid-Layout für SwissFEL

Unterverteilungen für weniger krit. Klienten

Pump and Probe Measurements

must

Figure 1 Transient X-ray-induced optical reflectivity ($\Delta R/R$) measurement: schematic overview. Extreme-UV FEL pulses (39.5 eV, <50 fs, <16 μ J)

Gahl, C. et al. A femtosecond X-ray/optical cross-correlator. Nature Photon. 2, 165–169 (2008).

Pump and Probe Measurements

must

Figure 1 Transient X-ray-induced optical reflectivity ($\Delta R/R$) measurement: schematic overview. Extreme-UV FEL pulses (39.5 eV, <50 fs, <16 μ J)

Gahl, C. et al. A femtosecond X-ray/optical cross-correlator. Nature Photon. 2, 165–169 (2008).

• Use a THz streak camera concept to measure the arrival time and length of the photon pulse.

Figure 5 | **Single-shot photoelectron spectra. a**,**b**, Non-streaked (**a**) and streaked (**b**) single-shot photoelectron spectra with fitted Gaussian curves. The smooth profile with no observable substructure is typical for 90% of the spectra acquired in this work. The vertical bars indicate the statistical error given by the number of electrons detected within a 0.7-eV-wide kinetic energy bin.

Figure 4 | **Histogram of reconstructed pulse durations.** Distribution of fullwidth at half-maximum (FWHM) durations of 13.5-nm pulses from FLASH, reconstructed from 1,000 individual shots by an analysis considering a Gaussian pulse profile.

U. Fruehling et al., Nature Photonics 3, 523 (2009)

ARAMIS Undulator

must

000

Laser-based THz source at PSI – R&D for SwissFEL

must

- 45 uJ THz pulse energy produced in DAST at 2.5 THz
- up to 2 MV/cm (or 0.6 Tesla)
- carrier-envelope phase stable electromagnetic fields
- good THz pulse energy stability (0.8% rms)

Hauri et al. APL 99, 161116 (2011)

Detector Development

PIXEL Detector for

European XFEL AGIPD SwissFEL

PIXEL Detector at the SLS

Proposed location on PSI - east site

must

Photochemistry: Fundamental Steps

must

PAUL SCHERRER INSTITUT

Strong correlated electron systems

must

Start off with the final velocity of the just-photoionized electron in the THz electric field:

$$Vf = V0 + \frac{e}{m_e}A(t)$$

Where $E_{thz} = -\frac{dA}{dt}$ A being the vector potential of the electric field.

Knowing that $E_{thz} = E_0 \cos(\omega t + \phi)$

What is W?

We get for the final kinetic energy of the electron:

$$K_{f} = K_{0} + 2U_{p} \sin^{2}(\omega t + \phi) + \sqrt{K_{0}U_{p}} \sin(\omega t + \phi) = W$$
Where
$$Up = \frac{e^{2}E_{0}^{2}}{4m_{e}\omega^{2}}$$

PAUL SCHERRER INSTITUT

Micro-bunching and coherent emission

Initially uniform e⁻ distribution (blue) evolves into microbunches (red).

 $P_{incoh} = NP_1$

Micro-bunches radiate coherently.

must

 $E = NE_1$ $P_{coh} = N^2 E_1^2 = NP_{incoh}$ $N \approx 10^9 !!$

Ultrafast Phenomena at the Nanoscale:

Science opportunities at the SwissFEL X-ray Laser

With contributions from:

General

Abela, R. (PSI) Braun, H. (PSI) Mesot, J. (EPFL, ETHZ, PSI) Ming, P. (PSI) Pedrozzi, M. (PSI) Quitmann, Ch. (PSI) Reiche, S. (PSI) Shiroka, T. (ETHZ) van Daalen, M. (PSI) van der Veen, J.F. (ETHZ, PSI)

Magnetization Dynamics

Allenspach, R. (IBM Lab, Rüschlikon) Back, Ch. (Univ. Regensburg) Brune, H. (EPFL) Eisebitt, S. (BESSY, Berlin) Fraile Rodriguez, A. (PSI) Gambardella, P. (ICN, Barcelona) Hertel, R. (FZ Jūlich) Kenzelmann, M. (ETHZ, PSI) Klāui, M. (Univ. Konstanz) Nolting, F. (PSI)

Editorial Board

Bruce D. Patterson

Laura Heyderman Chris Milne Pierre Thibault Kurt Ballmer Urs Staub

Chairman

Magnetization Dynamics Solution Chemistry and Surface Catalysis Coherent Diffraction Ultrafast Biochemistry Correlated Electron Materials

Nowak, U. (Univ. Konstanz) Rønnow, H. (EPFL) Vaterlaus, A. (ETHZ)

Solution Chemistry and Surface Catalysis

Bressler, Ch. (EPFL) Chergui, M. (EPFL) Churakov, S. (PSI) van Bokhoven, J. (ETHZ) van der Veen, R. (EPFL, PSI) Wokaun, A. (ETHZ, PSI) Wolf, M. (FU Berlin) Zietz, B. (EPFL, PSI)

Coherent Diffraction

Bunk, O. (PSI) Froideval, A. (PSI) Howells, M. (ESRF, Grenoble) Kewish, C. (PSI) Ourmazd, A. (Univ. Wisconsin) Pfeiffer, F. (EPFL, PSI) Robinson, I. (UC London) Samaras, M. (PSI) Schmitt, B. (PSI) Schulze-Briese, C. (PSI) van der Veen, J.F. (ETHZ, PSI) van Swygenhoven-Moens, H. (EPFL, PSI)

Ultrafast Biochemistry

Chergui, M. (EPFL) Kjelstrup, S. (NTNU, Trondheim) Meuwly, M. (Univ. Basel) Schuler, B. (Univ. Zurich) van Thor, J. (IC, London)

Correlated Electron Materials

Chumakov, A. (ESRF, Grenoble) Hengsberger, M. (Univ. Zurich) Johnson, S. (PSI) Mesot, J. (EPFL, ETHZ, PSI) Osterwalder, J. (Univ. Zurich) Schmitt, Th. (PSI) Strocov, V. (PSI) Wolf, M. (FU Berlin)

Scientific Challenges

must

Magnetism: materials and processes for tomorrow's information technology

Catalysis and solution chemistry: for a clean environment and a sustainable energy supply

Coherent diffraction: flash photography of matter

Biochemistry: shedding light on the processes of life

Correlated electrons: the fascination of new materials

Pump-probe surface catalysis

must

Crystallography ?????????

must

PIXEL Detektor für SwissFEL

Quelle	Betrag	Anmerkungen	
ETH Bereich	20 MCHF	Zugesagt für 2012	
EDI Department	9 MCHF	Zugesagt für 2012	
Kanton Aargau (Lotterie Font)	30 MCHF	Zugesagt 6 MCHF/y 2012-16	
CH Bundesmittel	157 MCH	Parlamentsentscheid 2012 Zeitraum 2013-16	
PSI budget	60 MCHF	8 MCHF/y 2012 13 MCHF/y 2013-16	
Total	276 MCHF		

+ PSI Mitarbeiter

SwissFEL Site Evaluation

SwissFEL Grossanlage:

- Anlagelänge ca. 800 m
- Variante "Aare" >
- > Variante "Quer"
- Varianten "Strasse/HTZ" >
- Variante "Berg"

holmiti

Rütife

- Variante "Hanglage"
- Variante "mitten im Wald" P
- Variante " Priorhölzliweg"

436

Selected site

4 MeV gun:	in operation
Scientific Case:	September 2009
Local community:	January 2010
ETH Board:	March 2010
Start "Bewilligungsverfahren":	March 2010
250 MeV injector:	First beam March 2010
Inauguration 250 MeV inj.	August 24th 2010
Parliament decision:	2012
Start of construction:	2013
Aramis operation:	2017
Athos operation:	2019

http://fel.web.psi.ch

SwissFEL technical R&D for key items with Industry

must

Item	RF structures	Pulsed High voltage for RF sources	Undulator magnet systems	Real time data analysis and compression
Key technologies	 Ultra precision machining Ultra clean, ultra precision bonding 	 High current, high voltage switching technology Precision voltage measurement & control 	 Heavy load precision positioning Precision machining of large support structures 	 FPGA electronic design and programming Fast algorithms
Status	Industry study for a production line with ultra precision machining and brazing furnace	Collaboration agreement .	Engineering studies Contracts for functional model partly placed	Design study completed Contract for prototype placed

• High field pump source for experiments (see Bruce's talk)

Bend radiation from compact e^{-} accelerator THz radiation with B > 1 T

Collaboration with KIT Karlsruhe for FLUTE THz source

 Key diagnostic tool for X-ray timing and pulse length diagnostic

(pioneered at FLASH/DESY, Nature Photonics 3 (2009), 523)

Laser generated THz

→ <u>avoids synchronization problem</u> for pump probe experiments. THz is produced from same laser beam as laser pump pulse

Beam splitter R=2%
Lens f=75mm-500mm
BBO* crystal for SHG
Teflon low pass filter
Off axis parabolic mirror
half wave plate
Polarizer
sampling crystal 2mm
quarter wave plate
polarizing beam splitter
Balanced photo detector