

Modification of optical fibers using femtosecond laser irradiation

Hans G. Limberger

Advanced Photonics Laboratory Swiss Federal Institute of Technology CH-1015 Lausanne, Switzerland Hans.limberger@epfl.ch

Acknowledgement

Co-workers

- Florian Dürr (PhD)
- Christian Ban
- Gerard Harbach (PhD)
- Aiping Luo (post doc)
- Collaborations
 - F. Cochet, Nexans, Switzerland
 - A. Yablon, OFS Laboratories
 - M. Douay, F. Hindle, Univ. Lille, France
 - D. Nikogosyan, S. Slattery, Univ. Cork, Ireland

- fs-laser induced changes in transparent materials: effects
- Laser induced changes in optical fibers
- Fabrication of wavelength selective filters in waveguides
 - LPG
 - FBG
- Characterization of fs-induced glass changes
 - Spectral features of fiber gratings
 - Two-dimensional birefringence / stress distribution changes

Timescale of physical phenomena

REVIEW ARTICLE

Femtosecond laser micromachining in transparent materials

RAFAEL R. GATTASS AND ERIC MAZUR

Department of Physics and School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, USA e-mail: mazur@seas.harvard.edu nature photonics | VOL 2 | APRIL 2008 | www.nature.com/naturephotonics

Nonlinear absorption in SiO2

Fig. 1. The spectral dependence of the reflectance of crystalline and fused quartz. For clarity, the values for fused quartz have been lowered by 5 per cent.

JPCS_32_1935_1971_Philipp_SiO2-bandgap

6 red photons

3 blue photons

2 UV photons

SiO2 band gap 8.3 - 9.3 eV

5

GeO2 (5mol%) -SiO2 band gap 7.1 eV GeO2: band gap 5.6 eV

Bragg grating principle

Fiber Bragg grating

forward to backward propagating mode coupling:

- Bragg grating: core modes
- Tilted grating: core to cladding and continuum

Long period grating

forward propagating mode coupling:

- LPG: core and cladding mode
- Rocking filter: polarization core modes
- Mode converter: core modes

Bragg grating applications

Temperature and/or strain sensing

9

IECHNOLOGES

2

nature photonics MARCH 2008 technology focus

Material characterization

- Laser irradiation of glass fibers leads to permanent refractive index changes
 - Stress relief (proposed: Sceats et al., '93, ruled out (Limberger et al. '95)
 - Color center changes (Hand and Russell, 1990)
 - Local rearrangement of defects → absorption changes. Kramers-Kronig
 - Volume changes, i.e. compaction, (Bernardin, Lawandy, 1990)
 - ➔ Densification of the core glass ➔ results in core stress change
- Spectral characterization (online)
 - Mean index change (photosensitivity)
 - Index amplitude (fringe visibility, stability, ..)

• Stress changes (after)

- Volume changes
- Photoelastic index changes

Bragg grating principle & spectra

Bragg gratings: periodic and axial refractive index structure written in the core of the fiber that reflects selectively a wavelength band

The intensity captured by the CCD is a cosine squared function of the polarizer's rotation angle and the phase retardation is directly linked to the refractive index.

Retardation:

$$\Re^{tot}(y) = \frac{\lambda}{2\pi} \delta(y) \ [nm]$$

 θ : polarizer rotation angle δ : fiber induced retardation

F. Dürr, PhD 2005

14

Fiber CCD projection data and stress

• Axial symmetric stress profile (Fiber: 9% GeO₂/SiO₂):

One single capture of projection data Stress calculated using Abel inversion

Inscription set-up

F. Hindle, M. Douay et al . PTL. 2004

 Grating transmission during inscription

800 nm fs-laser written LPG in SMF-28

Fs-laser: λ =800 nm, τ_P = 160 fs, I_{max} = 6 x 10¹² W/cm² (M.Douay, F. Hindle, Univ. Lille, F) Vertical

 Modification of stress only occurs in the Ge-doped core

Dürr, Limberger et al. APL 84, 4983, 2004

800 nm fs-laser written LPG in SMF-28

Fs-laser: λ =800 nm, τ_P = 160 fs, I_{max} = 6 x 10¹² W/cm² (M.Douay, F. Hindle, Univ. Lille, F) horizontal

Dürr, Limberger et al. APL 84, 4983, 2004

400 nm fs-laser written LPG in SMF-28

Laser parameters:

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

> Av. power, P: ~140 mW Repetition rate, f: 248.4 kHz Pulse width, δ t: ~250 fs Pulse energy, E_p: 0.5 μ J

Focusing and irradiation:

Objective: 20× Beam diameter: Pulse fluence, $F_p = E_p/A$: Peak intensity, $P_p = E_p/\delta t$: Intensity, $I = F_p/\delta t$ Stage velocity, v: Dose, F=N $F_p = P/(v\Delta y)$ N.A.= 0.4 (f=8.55 mm) ~6 μm (area, A: ~28 μm) 1.7 J/cm² 2 MW 6.9 x 10¹² W/cm² 0.18 mm/min 1.02 MJ/cm²

LPG Transmission spectrum

Grating parameters:

SMF-28, Corning H2 loaded Period: 450 μm Duty cycle ratio: 0.5 Length: 18.675 mm

264 fs-laser written FBG in SMF-28

Fs-Nd:glass laser system (Nikogosyan, S. Slattery, Univ. Cork):

264 nm Nd-glass femtosecond laser pulse duration: 220 fs (FWHM), beam diameter: 0.3 cm (FWHM), repetition rate: 27 Hz, pulse energy: up to 300 µJ. irradiation intensity: 300-340 GW/cm2.

FBG length: 3 mm (FWHM). neither self-focusing nor type II damage

520 times smaller dose for H2 loaded fibers

Limberger, Ban et al. OpEx 15, 5610, 2007

264 fs-laser written FBG in SMF-28

• Fs-Nd:glass laser system:

- 520 times smaller dose for H2 loaded fibers
- H₂ loading changes the core stress

Limberger, Ban et al. OpEx 15, 5610, 2007

Fs-Nd:glass laser system:

 $\Delta \sigma_z / \Delta n = 0 \text{ kg/mm}^2$.

→ Color center only!

- (Nikogosyan, S. Slattery, Univ. Cork)

H₂-loaded, irradiated fiber

20 -H_ loaded, non irradiated -H₂ loaded, irradiated 10 axial stress [MPa] 0 -10 -20 -30-40-50 50 0 radial position [µm]

Index changes without stress changes

Limberger, Ban et al. OpEx 15, 5610, 2007

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 264 fs-laser written FBG in SMF-28

- Fs-Nd:glass laser system:
 - (Nikogosyan, S. Slattery, Univ. Cork)

Fluence [kJ/cm²]

Limberger, Ban et al. OpEx 15, 5610, 2007

ÉCOLE POLYTECHNIQUE ÉCOLE POL

• Fs-Nd:glass laser system:

(Nikogosyan, S. Slattery, Univ. Cork)

- Local compaction of the silica cladding at fiber exit
 - Strong tensile stress change in the fiber core
 - $\Delta \sigma_z / \Delta n = 1.55 \times 10^{-4} \text{ kg/mm}^2$
 - → 69% of core index change due to compaction

Limberger, Ban et al. OpEx 15, 5610, 2007

Index modulation [10⁻¹]

H2-loaded SMF-28

0.1

10

Summary and conclusion

- Fs-laser at different wavelength (800, 400, 266 nm) used to fabricate gratings in GeO2-SiO2 and plastic optical fibers.
- Window of irradiation parameters given by measurable index changes (lower bound) and self-focusing or damage (upper bound)
- Total index change measured using spectral features of gratings
- Birefringence (stress) measurements are used to determine the presence and amount of photoelastic and volume changes (compaction changes) that lead to refractive index changes
- Using fs lasers
 - the percentage of compaction, i.e. structural changes is highest
 - High index changes can be achieved in hydrogen loaded fibers without compaction (color centers only)

