Ceatech

A Comparative LCA study on Potential of very-large scale PV Systems

Masakazu Ito

CEA@INES

Contents

- 1. Background
- 2. Basics and points for comparing LCA results

3. Example of research result

- A comparative study on life cycle analysis of 20 different PV modules installed at the Hokuto mega-solar plant
- 4. Example of research result
 - Energy from the Desert: Very Large Scale PV Power-State of the Art and Into the Future, Routledge, USA and Canada, 2012.

Nuclear power plants in Japan

- All nuclear power plant were stopped after the Great East Japan Earthquake, 11 March 2011.
- 3rd and 4th power plant in Ohi by Kansai Elec. was restarted in 5th and 21st of July 2012, and now in scheduled maintenance from 2nd and 15th of Sep 2013.

Statistics: 50 reactors 46GW 29% of elec.

Source: Graphical Flip-chart of Nuclear & Energy Related Topics, **The federation of electric Power Companies of Japan**, 2011

End of Operation: The Japan Atomic Power Co.- Tokai (March 31, 1998) / Chubu Electric Power Co.- Hamaoka mactors 1 and 2 (January 30, 2009)

In May, 2011, Tokyo Electric Power Company decided to decommission Units 1 to 4 and to abolish plans to build Unit 7 and 8 at Fukushima Dalichi Nuclear Power Station which were severely damaged due to the Tohoko-Pacific Ocean Earthquake and the tsunami that followed after on March 11, 2011.

Imp 154 C - INES

CO2 emissions rate of TEPCO in 2012

- 0,375 in 2010 -> 0,525 in 2012: 40% increase
 - 0,374 -> 0,406 with Kyoto protocol

Stern Review

- Nicholas Stern
 - Chair of the Grantham Research Institute on Climate Change and the Environment at the London School of Economics Review on "The Economics of Climate Change"
- Stern Review on The Economics of Climate Change (2006)
 - Without action: 5% of GDP
 - or 20% including wider range of risks and impacts
 - With action: 1% of GDP

FROM RESEARCH TO INDUSTRY

2. Basics and points for comparing LCA results

Energy payback time (EPBT)

$$EPBT = \frac{E_{mat} + E_{manf} + E_{trans} + E_{inst} + E_{EOL}}{(E_{agen} / n_G) - EO_{\&M}}$$

EPBT expresses the number of years the system takes to recover the initial energy consumption involved in its creation throughout its life cycle via its own energy production.

- E_{mat} : Primary energy demand to produce materials comprising PV system
- *E_{manuf}*: Primary energy demand to manufacture PV system
 E_{trans}: Primary energy demand to transport materials used during the life cycle
- *E_{inst}* : Primary energy demand to install the system
- E_{EOL} : Primary energy demand for end-of-life management
- *E_{agen}*: Annual electricity generation
- $E_{O&M}$: Annual primary energy demand for operation and maintenance
- n_G : Grid efficiency, the average primary energy to electricity conversion efficiency at the demand side

Guideline by IEA/PVPS Task12, Report by Task8

CO2 emissions rate

Report by Task8

$$g_{co2} = \frac{G_{input}}{E_{gen} \cdot L_{PV}} = \frac{G_{man} + G_{trans} + G_{inst} + G_{use} + G_{decomm}}{E_{gen} \cdot L_{PV}}$$

- g_{co2} : life-cycle CO₂ emission intensity [**g-CO2eq/kWh**]
- *G_{input}* : CO₂ emissions during system life-cycle [g-CO2eq]
- *G_{man}* : CO₂ emissions due to manufacture of each system component [g-CO2eq]
- *G_{trans}* : CO₂ emissions for transportation of the system components [g-CO2eq]
- G_{inst} : CO₂ emissions for installation of the system components [g-CO2eq]
- *G*_{use} : CO₂ emissions during system operation and maintenance [g-CO2eq]
- G_{decomm} : CO₂ emissions during system decommissioning
- *E_{gen}* : Annual AC power generation [kWh]
- L_{PV} : lifetime of the PV system [years]

Calculation of LCA

Background data: From database (steel, electricity...) Foreground data: Collecting from actual system and estimation

- Software
 - SimaPro

Database

Ecoinvent

• MiLCA

LCA Society of Japan

For comparison of LCA

Condition/assumptions should be clear

- Lifetime
- Irradiation data
- Performance ratio
- Degradation

Manufacturing location

- Efficiency of electricity generation
- CO2 emissions of electricity
- g-CO2, g-C, g-CO2eq, or g-Ceq

Lifetime

- There is a guideline.
- But they are different between papers.

PV modules 30 years for mature module technologies

Inverters	15 years for small plants or residential PV systems; 30 years with 10% part replacement every 10 years for large plants
Structure	30 years for rooftop- and facade-mounted units, and between 30 to 60 years for ground-mounted installations on metal supports. Sensitivity analysis should be performed.
Cabling	30 years

PV LCA guideline by IEA/PVPS Task12

Conditions/assumptions

Irradiation

- Local data at tilted angle
- or 1700kWh/m2/year

Performance ratio (PR)

- 0,75 for rooftop-mounted
- 0,80 for ground-mounted

Degradation

- 0,80 at the end of life-time
- Crystalline-Si: 0,5%/year
- Thin-film: 0,5%/year (or higher)

PV LCA guideline by IEA/PVPS Task12

Differences of Irradiation

Data: NASA, SeaWiFS

Masakazu ITO | 13

Horizon vs tilted angle

Don't look only horizontal data

Energy payback time (EPBT)

$$EPBT = \frac{E_{mat} + E_{manf} + E_{trans} + E_{inst} + E_{EOL}}{(E_{agen} (n_G)) + EO_{\&^M}}$$

- η_G : Grid efficiency, the average primary energy to electricity conversion efficiency at the demand side
- All data will be calculated in primary energy base.
- Electricity output of PV system will be calculated in primary energy too.
- However, electricity conversion efficiency is depends on location.

Guideline by IEA/PVPS Task12, Report by Task8

Power generation efficiency by countries

図 1-1 2005 年における各国の発電効率の比較(CHP を含む)

Source: Research Institute of Innovative Technology for the Earth

CO2 emissions per electricity generation

CO2 emissions per kWh by fuel

Source: Graphical Flip-chart of Nuclear & Energy Related Topics, The federation of electric Power Companies of Japan, 2011 Data: CRIEPI: Central Research Institute of Electric Power Industry, Evaluation of Life Cycle CO2 Emissions of Power Generation Technologies – Update for State-fo-the art plants – , Eiichi Imamura and Koji Nagano, 2010

Imp 154 C - INES

Unit of green house gases

- CO2 or C?
 - CO2 = 44/12 x C = 3,7 x C "Calculation of Molecule"
- CO2 or CO2eq?
 - CO2 only or including other GHGs.

Points to read LCA results

- Condition of assumptions should be clear
 - Lifetime
 - Irradiation data
 - Performance ratio
 - Degradation
- Manufacturing location
 - CO2 emissions of Electricity
- g-CO2, g-C, g-CO2eq, or g-Ceq

Masakazu Ito, Mitsuru Kudo, Masashi Nagura, Kosuke Kurokawa, A comparative study on life cycle analysis of 20 different PV modules installed at the Hokuto mega-solar plant, Progress in Photovoltaics: Research and Application, 19 (2011) 878-886.

3. Example of research result

A comparative study on life cycle analysis of 20 different PV modules installed at the <u>Hokuto</u> mega-solar plant

Background – About the Project –

- NEDO started a 5 year MW system project in 2006
 - Focusing on generating high-quality electricity which does not affect grid voltage, frequency and waveform mainly.

Hokuto site (Our team)

- 2 MW system
- Development of large capacity inverter
- To find suitable PV module for LSPV
- Environmental study
- Wakkanai site
 - 5 MW system
 - Research on electricity stability with battery
 - and so on

NEDO: New Energy and Industrial Technology Development Organization

About – the Hokuto city–

- The Hokuto city has the longest duration of sunshine in Japan
- Close to Tokyo and easy access from highway

An aerial photo of the mega-solar system

撮影:北杜市

Purposes – Environmental Study on PV –

Purposes

- 1. To find environmental-friendly design (PVSEC-17)
- 2. To evaluate environmental effect of Large PV systems by LCA to know if it can resolve environment issues and how much potential it have.
- To apply real energy yield. This is important to calculate Energy payback time and CO₂ emissions rate.

Approach

- Summarize 'Real' input and output data of the PV systems
- Calculate CO₂ emission and Energy input and output by using real system data

PV modules installed at the site

Туре	Nominal power	Module efficiency	Capacity [kW]
	[W]	[%]	
A1: sc-Si	84	13.2	30
A2: a-Si/sc-Si	186	15.9	30
A3: sc-Si	160	12.6	10
A4: sc-Si	160	12.6	10
A5: sc-Si	150	11.8	10
A6: sc-Si	200	12.0	30
A7: sc-Si	173	12.0	30
B1: mc-Si	167	12.6	30
B2: mc-Si	179	14.0	100
B4: mc-Si	167	13.2	30
B5: mc-Si	180	12.3	10
B6: mc-Si	190	13.0	10
B7: mc-Si	240	12.4	30
B8: mc-Si	170	13.5	10
C1:a-Si	60	6.1	30
C2: µc-Si/a-Si	110	8.8	10
C3: µc-Si/a-Si	130	8.3	10
D1: CIS	70	8.8	30
Imp 154 D2: CIS	125	11.2	3

Balance of System for LCA

- Inverter: 10 kW for each 10kW array unit
- Array: Galvanized steel, 30° tilt angle, 30 m/s wind speed
- Foundation: Pile
- Cable
- Junction box
- Transformer
- etc...

Boundary of LCA

PV system's life

Assumptions of this study

References for LCA of the 20 PV systems

	PV module, Inverter	Other components		
Mining	NEDO database	LCA database		
Manufacturing	NEDO database LCA datab			
Transport	Actual km data	LCA database		
Construction	Actual data			
Waste management	LCA database	LCA database		

PV modules of NEDO database is assumed to be produced in Japan

LCA database: JLCA-LCA database 2009 Fy 1st Edition, JEMAI LCA Pro, Japan Environmental Management Association for Industry

Annual yield of each PV systems

Туре	Yeild [kWh/kW]			
A1: sc-Si	1412			
A2: a-Si/sc-Si	1397			
A3: sc-Si	1487			
A4: sc-Si	1319			
A5: sc-Si	1420			
A6: sc-Si	1428			
A7: sc-Si	1383			
B1: mc-Si	1338			
B2: mc-Si	1426			
B4: mc-Si	1419			
B5: mc-Si	1500			
B6: mc-Si	1451			
B7: mc-Si	1404			
B8: mc-Si	1440			
C1:a-Si	1295			
C2:c-Si/a-Si	1337			
C3:a-Si	1333			
D1:CIS	1538			
D2:CIS	1494			

- kW is not from label but by flash test of each PV modules
- 0.5 % degradation is also considered. (It maybe small for thin-film)
- Life-time : 30 years for all component Life-time of inverter (10 kW) is 15 years

(Before considering degradation)

Assumptions of LCA data of the system equipment

	Module efficiency in reference	Energy requirement	CO ₂ emissions	
PV module (in 2008)				
sc-Si	14.3 %	3986 MJ/m ²	193.5 kg-CO ₂ /m ²	
a-Si/sc-Si	16.6 %	3679 MJ/m ²	178.0 kg-CO ₂ /m ²	
mc-Si	13.9 %	2737 MJ/m ²	135.2 kg-CO ₂ /m ²	
a-Si (in 2000)	-	1202 MJ/m ²	54.3 kg-CO ₂ /m ²	
a-Si/µc-Si	8.6 %	1210 MJ/m ²	67.8 kg-CO ₂ /m ²	
CIS	CIS 10.1% 1105 MJ/		67.5 kg-CO ₂ /m ²	
10 kW inverter		0.57 GJ/kW	43 kg-CO ₂ /kW	
Cable and conduit		1068 GJ/600kW	62.0 t-CO ₂ /600kW	
Array (Galvanized steel)		22.5 GJ/t	1.91 t-CO ₂ /t	
Other small components, junction box, transformer, etc. are also included.				

Imp 154 C - INES

Masakazu ITO | 35

Energy requirement and EPBT

CO2 emissions and CO2 emissions rate

Comparison of CO2 emissions

 CO₂ emission rate of the PV systems are much smaller than conventional fossil fuel energies.

Reference: CRIEPI, Evaluation of power source by LC-CO₂ (Japanese)

Conclusions

- In this study, the authors evaluated the Mega-solar system with 20 different PV modules by LCA approach.
- The mc-Si and CIS got good result.
 - mc-Si and CIS PV module have high efficiency and lower energy requirement.
- Installed sc-Si did not get good result at now
 - Efficiency is lower than usual. (11.8~13.2%)
- However, the CO₂ emission rate is much lower than fossil power plant. Therefore, they have potentials to mitigate global warming.

Keiichi Komoto, Christian Breyer, Edwin Cunow, Karim Megherbi, David Faiman, Peter van der Vleuten, Energy from the Desert: Very Large Scale PV Power-State of the Art and Into the Future, Routledge, USA and Canada, 2012.

4. Example of research result

Life-Cycle Analyses of Very-Large Scale PV Systems using five Types of PV Modules

10 years ago: OUR FUTURE DREAM !

Nowadays: More Realistic !

Transition and Perspective of CO₂ (IPCC)

Warming on Surface of the Earth (IPCC)

Evaluation scheme of LCA

Designing of array and foundation Estimation of in-plain irradiation 2 Calculation of output 3 Transmission loss Life-Cycle Analysis 5 Sensitivity analysis 6

Ceatech

Boundary of LCA

Ceatech

Assumptions of transport

Assumption: PV module

- mc-Si (multi crystalline silicon)
 - 186 W, 13.9 %
- sc-Si (single crystalline silicon
 - 165 W, 14.3 %
- a-Si/sc-Si (amorphous silicon/sc-Si)
 - 195 W, 16.6 %
- Thin-film Si (a-Si/micro crystalline silicon)
 - 37.5 W, 8.6 %
- CIS (cupper indium di-selenide)
 - 80 W, 10.1 %,

Assumptions

1. Capacity

- : 1 GW
- 2. Installation site
- 3. Array
- 4. PV module
- 5. PR
- 6. Life-time
- 7. O&M
- 8. Degradation

- : Gobi desert
 - : South facing, Fixed flat plate
 - : mc-Si, sc-Si, a-Si/s-Si, a-Si/µc-Si, CIS
 - : 78% (depends on coefficiency of temp.)
 - : 30 years (15 years for Inverter)
 - : 9 persons make 3 team for 3 shifts
 - : 0.5%/year

50

Equipment

Energy from the desert 2012

PV module	mc-Si	sc-Si	a-Si/sc-Si	Thin-film Si	CIS
Capacity (MW)	1 071	1 024	1 021	1 036	1 034
Annual power generation [GWh]	1 687	1 596	1 592	1 615	1 604
Land requirement (km ² /GW)	21,3	20,7	18,0	34,5	29,2
Array support structure (10 ³ tonne)	93	88	83	199	152
Foundation (10 ³ m ³)	513	546	463	798	683
600 V CV 2 mm ² (km)	10 692	10 469	11 941	129 397	37 812
600 V CV 5,5-8 mm ² double core (km)	1 717	1 838	1 734	4 095	2 183
600 V CV 60-150 mm ² (km)	1 060	941	1 146	2 100	1 555
6,6 kV CV-T 22 mm ² (km)	262	233	283	343	302
6,6 kV CV 200 mm ² (km)	306	320	229	356	344
110 kV CV 150 mm ² (km)	255	245	236	319	292
Trough (30-degree) (m ³)	346 307	345 816	316 393	669 445	529 150
Inverter with transformer (set)	4 040 (include replacement and maintenance)				
6,6 kV circuit breaker (set)			2 080		
110 kV/6,6kV transformer (set)			50		
110 kV disconnecting SW (set)			180		
110 kV GIS (set)			100		
SVC (set)			20		
Common power board (set)			10		
110 kV TACSR 410 mm ² (km)			1 202		
AC 70 mm ² (km)			100		
Tower (steel) (tonne)			22 044		
Foundation (tonne)			50 932		Masakazu ITO

Energy consumption

CO₂ emissions

Disposal
Transmission
Construction
Transportation
Other components
Other components
Conduit
Cable
Inverter
Foundation
Array support
PV module

Energy pay-back time and CO2 emissions rate

CO₂ emission rate

Summary

The authors studied environmental aspects

- Energy requirement, EPT, CO₂ emissions, and CO₂ emission rate
- There are no big differences. But;

• Energy

- CIS is the smallest and sc-Si is the largest
- EPT of CIS is the smallest. It is 2.1 yeas. sc-Si is 2.8 yeas.

CO₂ emissions

- Thin-film Si is the largest: 71 g-CO₂/kWh
- mc-Si, a-Si/sc-Si, CIS are the smallest: 52-53 g-CO₂/kWh

Results with Sensitivity analysis

IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation

Summary for Policymakers

This Summary for Policymakers was formally approved at the 11th Session of Working Group III of the IPCC

Abu Dhabi, United Arab Emirates, 5-8 May 2011

Ceatech

References

IPCC, 2011: Summary for Policymakers. In: IPCC Special Report on **Renewable Energy Sources** and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press. Figure SPM.XX

Summary

1. Background

2. Basics and points for comparing LCA results

• Which explained how to read LCA results.

3. Example of research result

 A comparative study on life cycle analysis of 20 different PV modules installed at the Hokuto mega-solar plant

4. Example of research result

• Very large scale PV systems assumed to be installed in Deserts were evaluated from environmental view points.

Thank you for your attention ! Masakazu.ITO@CEA.FR

Alternative Energies and Atomic Energy Commission INES RDI | Savoie Technolac – BP332 – 50 avenue du Lac Léman F-73377 Le Bourget-du-Lac - FRANCE T. +33 (0)4 79 79 21 83 | F. +33 (0)4 79 68 80 49 Email : <u>Masakazu.lto@cea.fr</u> Technological Research Division Solar Technologies Department Laboratory for Solar Systems

Public establishment with commercial and industrial character | RCS Paris B 775 685 019