New developments in LED components for SSL

Institute of Condensed Matter Physics Ecole Polytechnique Fédérale de Lausanne, Switzerland

III-nitride semiconductors

And the "blue" came in the early 90's with III-V nitrides (AI,Ga,In)N

UV, blue, and green LEDs Color displays, High density DVD

White LEDs

GaN is the building block of Solid State Lighting

White LED market

Copyrights © Yole Développement SA. All rights reserved.

White LEDs: cost issue

Light source efficacy

Luminous efficacy of light sources

Solid state lighting with GaN

How can we make such high efficiency LEDs ? and how do they work ?

Growth of III-V nitrides

Lack of GaN bulk substrates

produced only at Unipress (PL) - 1 cm²

GaN technology has been developed on foreign substrates

⇒ Large Lattice mismatch
Al₂O₃ (0001): +16 %
6H-SiC (0001): -3,5 %
Si (111): -17 %
(GaAs/Si: +4 %)

Hetero-Epitaxial Growth ⇒ Dislocations

Epitaxial growth of III-V nitrides

Most commonly used substrate: sapphire (0001)

Two-step growth procedure

1) a thin buffer layer (25 nm) deposited at low-temperature (500°C) and further annealed

2) growth at high-temperature (1050-1100°C)

Epitaxial growth of III-V nitrides

High dislocation density: 1-10x10⁸ cm⁻²

LED efficiency

Normalized Efficiency vs. Etch Pit Density

1 – LEDs: high efficiency (IQE>90%) despite high density of defects2 - LEDs are less sensitive than LDs to the presence of dislocations

LED efficiency

Efficiency of a defective medium

Carriers in a quantum well

16%

Carriers in quantum dots

Gérard and Weisbuch (patent 1990)

Carrier localization prevents radiative efficiency collapse IQE > 95%

Current technology – LEDs

HB-LED Technology: process chain

Blue LEDs: IQE > 90% Ext. Eff.> 85% EQE = 80% Wall plug efficiency (WPE)> 60%

LED efficiency: light extraction

Pre-dominant Nitride chip designs

Lateral and Verticle chip designs prevail in selected applications

Maximum lumen output per chip area

LED efficiency

Efficacy Split - Current Status

OSLON Square (3000 K, CRI 80) at 350 mA, 85°C;

LEDs – Challenges and perspectives

IQE – droop – green gap

R: recombination rates

N: carrier density in quantum well

LEDs – Challenges and perspectives

Silicon as next generation substrate?

P. Stauss, SPIE Photonics West 2012

Conclusion – Challenges and perspectives

- Higher efficiency (limiting the efficiency droop)
- Longer wavelengths
- Cheaper fabrication process (NWRs, Si, new materials)
- Better Light (CRI): UV LEDs + phosphors?