Verfahren und Systeme zur Mikro-und Nanostrukturierung mit Ultrakurzpulslasern

Arnold Gillner

Fraunhofer-Institut für Lasertechnik Aachen

Übersicht

Gliederung

- Grundlagen Ultrakurzpuls-Laserbearbeitung
- Werkstoffmodifikation mit UKP-Laserstrahlung
- 2-Photonen-Prozesse mit UKP-Lasern
- Laserabtrag mit ns- und ps-Lasern
- Laserstrahlquellen zum Präzisionsabtrag
- Maschinentechnik zum Präzisionsabtrag mit Laserstrahlung

Grundlagen Laser-Wechselwirkung

- Elektron-Phonon Wechselwirkung (t_{ep} < 1 ps)
 - \rightarrow Plasmadynamik
- Phonon-Phonon Wechselwirkung (t_{pp} < 100 ns)
 - → Schmelzbildung
 - → Mikrostrukturelle Eigenschaftsänderung

- a) Multiphotonen-Absorption ~ I^n
- b) Avalanche-Ionisation ~ I

Metallisches Verhalten aller Werkstoffe während und kurz nach Bstrahlung

ps-Wechselwirkung mit Metallen

- Energieabsorption an Elektronen
- Übertragung der Energie an Gitter nach typischerweise 10 ps
- Erwärmen und Aufschmelzen nach Ende des Laserpulses

- Überwiegend dampfförmiger Abtrag
- Minimale thermische Eindringtiefe

$$T(x) = \frac{2I_0}{K}\sqrt{\kappa t} \cdot ierfc \frac{x}{\sqrt{4\kappa t}}$$

page 4

2-Temperatur-Modell der Kurzpulsbearbeitung

Temperaturen

Elektronentemperatur	$c_{E} \frac{\partial T_{E}}{\partial t} = \nabla \cdot \left(\lambda \cdot \nabla T_{E} \right) - G \left(T_{E} - T_{L} \right) + E_{opt}$
Phononentemperatur	$c_L \frac{\partial T_L}{\partial t} = G(T_E - T_L)$
Kopplungskonstante	$G = \frac{\pi m n_e v^2}{6 \tau (T_E) T_E}$
E _{opt} =Absorbierte optische Energie m _e =Elektronenmasse n _e =Elektronendichte	

- v =Elektronengeschwindigkeit
- τ =Zeit zwischen zwei Elektronenstößen

Fraunhofer Institut Lasertechnik

2-Temperaturmodell der Kurzpulsbearbeitung

Wechselwirkung Kurzpulslaser mit Metallen

Fraunhofer Institut

Lasertechnik

2-Photonenprozesse zur Mikro- und Nanostrukturierung

- Fokussierung von Femtosekundenund Pikosekunden-Laserstrahlung mit hoher numerischer Apertur
- Erzeugung hoher Photonendichten
- Addition der Photonenenergien im Fokus
- Reduzierung der
 Wechselwirkungsgeometrie
- Nutzung nichtlinearer Absorptionsphänomene
- UV-Strukturierung in transparenten Medien

Fraunhofer Institut Lasertechnik

Werkstoffmodifikation mit Ultrakurzpuls-Verfahren

Schreiben von Wellenleitern und Mikrokanälen

Modifizierte Linien in dotierten Gäsern als Basis für integrierte Wellenleiterlaser

Lokalisiertes Schmelzen und schnelles Abkühlen führt zu thermomechanischem Stress

Materialbewegung führt zu Arealen mit höherer und niedrigerer Dichte und Brechungsindex

Werkstoffmodifikation mit Ultrakurzpuls-Verfahren

Schreiben von Wellenleitern und Mikrokanälen

Interferenzmikroskopie von Wellenleitern

Werkstoffmodifikation mit Ultrakurzpuls-Verfahren

Erzeugung periodischer Nanostrukturen

Nano-Strukturierung unterschiedlicher Werkstoffe ohne thermische Beeinflussung durch nichtlineare Effekte

Fraunhofer Institut Lasertechnik

2-Photonenprozesse zur 3-D-Bauteilgenerierung

2-Photonenprozesse zur 3-D-Bauteilgenerierung

page 13

Nano-Manufacturing mit Ultrakurzpulslasern

Photochemische Nanofunktionalisierung

 Chemische und strukturelle Nano-Modifikation < 100 nm durch Kombination von Interferenzbestrahlung, Multiphotonen-Absorption und photochemischer Aktivierung von Polymeren und aktivierbaren Dünnschichten

Materialabtrag mit ps-Puls-Bursts

- Laser SuperRapid (Lumera Laser)
- Pulsdauer *t* =12 ps
- Repetitionsrate $f \leq 500 \text{ kHz}$
- Multi puls option: ja
- Interpuls-Separation Δt n = 20 ns
- Burst Energie EB max 200 µJ

Verfahrensstrategie zum Präzisionsabtrag

Fraunhofer Institut Lasertechnik

Einflussfaktoren Laserabtrag

Änderung der Schichtstärke in Abhängigkeit von Fokuslage und eingesetzter Laserleistung

Fraunhofer Institut Lasertechnik

ILT

Lasertechnik

Fraunhofer Institut

Laserabtrag mit ns-Laser

Komplexes Spritzgussteil mit multiplen Bohrungen

Erodiert

Laserabtrag mit ns-Laser

page 19

Laserabtrag mit ps-Laser

Erodiert

- Keine Erodierwerkzeuge
- Abtragsqualität vergleichbar mit Erodieren

page 20

Laserabtrag mit ps-Lasern in Hartmetallen

Prägewerkzeug in Wolframkarbid

Prägeergebnisse in Federstahl

Laserabtrag mit ns-Laser

page 22

Mikrospritzgusswerkzeug für Linsenarray mit ps-Abtrag

Multilinsen-Spritzgusswerkzeug

Nach laserbasierter Werkzeugpolitur Oberflächenqualität besser 100 nm

Fraunhofer Institut Lasertechnik

Mikrospritzgusswerkzeug für Linsenarray mit ps-Abtrag

Multilinsen-Spritzgusswerkzeug

Nach laserbasierter Werkzeugpolitur Oberflächenqualität besser 100 nm

Fraunhofer Institut Lasertechnik

Mikrospritzgusswerkzeug für Lichtleitelemente

Trapez-Oberfläche in Spritzgusswerkzeug Anwendung als Lichtleitelemente in Instrumententafeln und LCD-Displays

Lasertechnik

Mikrobohren mit ps-Laserstrahlung

Querschliff einer Einspitzdüse 1 mm Stahl Hohe Qualität mit Rauigkeit < 1 µm

Institut Lasertechnik

Mikrobohren von Tintenstrahldüsen

page 27

Mikroabtrag mit hohen Repetitionsraten

page 28

Quelle: Lumera

Verfahrensspezifische Modulation der Laserleistung

Tailored Pulse Trains

Reduzierung der Rauhigkeit

Erhöhung der Abtragsleistung

- Oberflächenkonditionierung
- Veränderung der atmosphärischen Bedingungen
- Werkstoffvorheizung
- Veränderung der Plasmabedingungen
- Kontrolle der Schmelzentwicklung
- Nachbearbeitung

Pulse burst timings

Lasertechnik

Abtrag mit ps-Triple-Pulsen

Ergebnisse:

- Erhöhung der Ablationstiefe um bis zu 90 % verglichen mit Einzelpulsen bei gleicher Pulsenergie $E_{\rm B}$
- Erhöhung der Ablationstiefe um bis zu 20 % verglichen mit 3 Einzelpulsen bei $E_{\rm B}/3$
- Ablationstiefe nahezu unabhängig der Zeitabstände Λt_1 und Λt_2

 $v_1 = 100 \text{ kHz}$ $\tau = 12 \text{ ps}$ mark speed = 400 mm/s line overlap ca. 70 % f = 120 mm $E_{3,1} = E_{3,2} = E_{3,2}$

Verringerung der Rauheit bei ps-Triple-Pulsen

Ergebnisse:

- $\Delta t_1 = 20 \text{ ns } R_a \text{ ist vergleichbar zu Einzelpulsen } E_1 = E_2$
- $\Delta t_2 = 20 \text{ ns } R_a \text{ ist nahezu unabhängig von } \Delta t_1$
- $R_a < 0.7 \mu m$ ist erreichbar über einen weiten Parameterbereich
- Best-erreichte Rauhheit: $R_a = 0.5 \ \mu m$

 $v_1 = 100 \text{ kHz}$ $\tau = 12 \text{ ps}$ mark speed = 400 mm/s line overlap ca. 70 % f = 120 mm $E_{3,1} = E_{3,2} = E_{3,2}$

Laserstrahlquellen zum Präzisionsabtrag

Aufbau ps-Laser

Pulserzeugung durch Modelocking

λ

- Erzeugung von ps-Pulsen im Modelock-Oszillator bei Pulsfrequenzenbis 100 MHz
- Selektion einzelner Pulse
- Nachverstärkung
- Kompression
- Erhalt von Strahlqualität und Peakleistung über großen Arbeitsbereich
- Leistungsskalierung bis Multi-MHz und Multi-100 W

page 33

Modes In the cavity

Lieferanten ps-Laser

Lumera Hyper-Rapid	Trumpf TruMicro5050	Time Bandwidth Fuego	Coherent Talisker	Corelase X-lase
			Name of Control of Con	· ·
1064 nm 12 ps 50 W@1MHz M² < 1.2 Puls Bursts	1030 nm < 10 ps 50 W@250kHz M² < 1.3	1064 nm < 12 ps >10 W@8MHz M² < 1.3	1064 nm < 15 ps >18 W@200kHz M² < 1.3	1064 nm < 20 ps >20 W@4MHz M² < 1.3

Fraunhofer Institut Lasertechnik

Entwicklung kommerzieller ps-Laser

- Hohe Repetitionsraten bis 50 MHz
- Hohe mittlere Leistungen bis 500 W bei gleichzeitig hoher Strahlqualität
- Puls-Burst-Systeme f
 ür optimierten Abtrag und hohe Oberfl
 ächenqualit
 ät
- Kompakte Bauformen
- Kostenreduktion von 250.000 € bei 50 W auf 100.000 € bei 200 W (bei entsprechenden Stückzahlen)
- Schnelle Leistungs- bzw. Energiemodulation

Steigerung der Abtragsrate von 0.5 mm³/min auf 50 mm³/min

Fraunhofer Institut Lasertechnik

Maschinen zur 3D-Präzisions-Laserstrukturierung

Sauer Lasertec DML40Si

3-Achs-Konzept 3D-Scanner Q-switch 15 µm Genauigkeit Integrierte Tiefenkontrolle

Concept Laser

M3 Linear

5-Achs-Konzept 2D-Scanner Q-switch + cw 15 µm Genauigkeit Modulares Systemkonzept FOBA GP 9000

3-Achs-Konzept 2D-Scanner Q-switch + cw 20 µm Genauigkeit Modulares Systemkonzept

Fraunhofer Institut Lasertechnik

Maschinentechnik zum Präzisionsabtrag mit Laserstrahlung

Scantechnik zur 3D-Präzisions-Laserstrukturierung

Hochleistungs-Galvanometerscanner

- Positioniergeschwindigkeit bis 10 m/s
- Bahngeschwindigkeit bis 3 m/s bei hoher Genauigkeit

Strahlfokussierungssysteme

F-Theta-Objektive

- Großer Arbeitsabstand
- Bildverzerrung
- keine angestellte Bearbeitung möglich

Vario-Scan-Objektive

- Keine Spotverzerrung
- kleiner Arbeitsabstand
- hohe Scangeschwindigkeit

page 37

Vielen Dank für Ihre Aufmerksamkeit

Fraunhofer ILT, Aachen

Arnold Gillner Fraunhofer Institute for Lasertechnology Steinbachstraße 15 D-52074 Aachen, Germany Phone: +49 (0) 241 89 06 -148 Fax: +49 (0) 241 89 06 -121 Email: arnold.gillner@ilt.fraunhofer.de

