

New Trends in Optics

Focus Tunable Lenses Light-Field Imaging

Dr. Boris Ecker

Swiss Photonics Workshop – Machine Learning CSEM SA – Neuchâtel – 04. Feb. 2016

EDMUND OPTICS – KEY FACTS

New Trends in Optics

Part I

Focus Tunable Lenses

LIQUID LENS APPLICATIONS

- Barcode Scanning
- Medical Imaging
- Consumer Market
- LED-Lighting
- Laser Processing
- Microscopy

- Handheld and Stationary Devices
- Intraoral cameras
- Cell phones, Tablets, Camcorders, ...
- Adjusting Illuminated Area
- Field Flattening / Larger Volumes and True 3D
- **Overcome Depth-of-Field Limitations**

Images Courtesy of Cognex / Optotune / Varioptic

LIQUID LENS APPLICATIONS

Every Application with Varying Distance between Object and Sensor Benefits from...

- Wide Focusing Range
- Fast Tuning
- Reliable Operation
- Fast Acquisition Times
- Less Cost
- More Compact Footprint

TWO MANUFACTURERS IN EUROPE

Varioptic France (2002)

Electrowetting

Optotune Switzerland (2006)

Electro-Mechanics

ELECROWETTING – WHAT IS IT?

Capacitor-Like Structure

 \rightarrow L: Conductive Liquid // I: Isolator // S: Substrate

• No Voltage:

 \rightarrow Contact Angle / Wetted Area Depends on Surface Tension Ratios

• Applying an Electric Field

- \rightarrow Results in Electrostatic Force
- → <u>Maximize Contact Area</u> (Liquid vs. Substrate)

VARIOPTIC – HOW DOES IT WORK?

- Oil + Water of Identical Mass Density
 - Minimize Gravity-Induced Deformations
 - More Robust (Vibration + Shock)
- Capacitive Nature:
 - No Power Consumption (Mobile Devices)
 - No Self-Inflicted Heat (Thermally Induced Aberrations)
- Electrostatic Force: Rather Weak by Nature
 - High Voltages Required (~60 V)
 - Limits Clear Aperture
 - Determines Speed

www.varioptic.com

VARIOPTIC – ARCTIC SERIES

- Clear Apertures: 2.5 mm // 3.9 mm
- Focus Range: 5 cm to Infinity
- Life Time >500,000,000 Cycles
- VIS and NIR AR Coatings
- Transmission >97% (VIS)
- Operating Temperatures: -20°C 60°C

www.varioptic.com

TWO MANUFACTURERS IN EUROPE

Varioptic France (2002)

Electrowetting

Optotune Switzerland (2006)

Electro-Mechanics

10

FOCUS TUNABLE LENSES

Electromechanical Approach

• Voice-Coil Actuator

 \rightarrow Ring Pushing Down on the Membrane \rightarrow Changes the Shape of the Lens

• Changing Current

 \rightarrow More or Less Liquid in the Center of the Lens

Current-Driven

 \rightarrow ~100s of mA $\,/\!/$ 5V

• Power Dissipation

→ Heat // Active Focal Length Correction

OPTOTUNE PRODUCTS

- Aperture
- Tuning Range
- Offset Lenses
- 6 mm // 10 mm // <u>16mm</u> 80 - 200mm Eocal Length

80 - 200mm Focal Length

- Various Liquids Available Application-Specific
- VIS and NIR AR Cover Glasses
- 1,000,000,000 Cylces
- -40°C 70°C Operating Temperature
- Higher Damage Threshold \rightarrow Laser Applications
- Large Apertures → Gravity-Induced Coma Aberrations Visible in Vertical Operation

USING TUNABLE LENSES UP FRONT

- Easy to Implement
- Might Require Filter Mount C-Mount Adapter
- Versatile Setup (min WD ~100mm)

USING TUNABLE LENSES UP FRONT

- Easy to Implement
- Might Require Filter Mount C-Mount Adapter
- Versatile Setup (min WD ~100mm)

Software? Matlab, Labview **Temperature Drifts?** Vibrations Lifetime? 1000000 Cycles How fast? 10 - 50 ms Gravity

Future Developments:

Larger Apertures Temperature Handling Multi-Electrode Designs

- Control Gravity (Image Quality)
- Improve Response Times
- 2015: Optotune **16mm** Aperture
- 2016: Varioptic 8mm Aperture, Multi-Electrode

New Trends in Optics

Part II

Light-Field Imaging

WHAT IS LIGHT-FIELD IMAGING?

A Simple Way of Getting 3D Images:

- One Shot
- One Lens
- One Camera a Plenoptic Camera
- Ambient Lighting

IMAGE-GENERATION

Standard Camera

- Main Lens Focusing on Sensor
- 3D Object 3D Image 2D Sensor
- Refocusing = Reposition Lens

Plenoptic Camera

- Main Lens Generates Intermediate Image.
- **Microlens Array** Focusing this Image on the Sensor.

COMPARISON: MICRO-STEREO SYSTEM

RAW AND REFOCUSED IMAGE

PROPRIETARY - Property of Edmund Optics, Inc. | 2015 Copyright© Edmund Optics, Inc.

worldwide

MORE THAN REFOCUS: 3D IMAGING

From Raw Image to Total Focus

Micro-images show multiple imaging of object parts

Computationally reconstructed image from raw image and depth map

Color-coded depth map for highcontrast areas

Filled depth map

12MP raw images // ~5 fps 2D and 3D

EO – WE DESIGN & MANUFACTURE

THANK YOU FOR YOUR ATTENTION!

Dr. Boris Ecker - BEcker@edmundoptics.de - +49 721 627 37 39

