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Outline

� Motivation

� The challenge

� Disentangling degradation mechanisms through DSC 

accelerated testing
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− Hydrophilic vs hydrophobic dye

− IV data

− IPCE (Incident Photon-to-Electron Conversion Efficiency) 

− EIS (Electrochemical Impedance Spectroscopy)

� Towards larger devices

� Summary



Motivation

� Develop integrated understanding of all materials 

and design aspects of dye solar cells (DSC)

‒ To best serve and advise our commercial partners

‒Optimum focus on most promising materials and 

technologies 
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‒

‒

technologies 

� Achieve optimised LCOE for any given application

‒ Performance

‒ Stability 

‒ Cost

Stability

Performance

1/Cost Stability

Performance

1/Cost



The challenge

� To achieve grid parity under a moving target of 

declining PV prices

� Performance – Stability - Cost

Performance
Hero cells

Performance

Industrial design 
today
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� 20+ years life time in building applications

� Standards: PV-specific + Building Standards

Stability1/Cost Stability1/Cost



20-year product life goal

System’s requirements

At the molecular level 

>100 million turnovers ���� at least for certain dyes/electrolytes

~No dye desorption ���� at least for certain dyes/electrolytes

Loss of NCS-, substitution by 
?

Lund et al vs Falaras et al. Low 80-
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Loss of NCS-, substitution by 
I-, nitriles, imidazoles, etc.

?
Lund et al vs Falaras et al. Low 80-
85oC stability with nitrile solvents

Isomerisation, e.g. N- to S-
bound SCN -

?
Not significant according to micro-
Raman (Falaras et al)

Decomposition of 
electrolyte components

?
Little is known, more in situ 
spectroscopic work required

Stability of electrocatalyst? ����
At least for Pt and certain 
electrolytes



At the cell level (Dyesol up to 250 mm length): Seals

20-year product life goal

System’s requirements

Suppress ingress of O2, H2O ���� Dyesol, Fujikura, Fraunhofer ISE

Suppress egress of solvent ���� Dyesol, Fujikura, Fraunhofer ISE 

Performance stability,  
85oC/1,000h; -40oC/+85oC 

at least for certain dyes/electrolytes, 
85oC/85% r.h.: requires glass-based 
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85oC/1,000h; -40oC/+85oC 
thermal cycling; 85oC/85% 
r.h./1,000h

����
85oC/85% r.h.: requires glass-based 
encapsulation (i.e. similar to CIGS or 
CdTe), best assessed at the panel level

� Excellent DSC durability under light soaking conditions 
(~60oC). E.g. Dyesol  >25,000 h quasi-continuous illumination 
    ���� 25-40 years life time extrapolated, depending on location
R. Harikisun, H. Desilvestro, Sol. Energy, 85, 1179 (2011), “Long-term stability of dye solar cells”

� IEC 61646 85oC/1,000h and thermal cycling tests remain 
challenging for DSC



At the module level

- Cell-to-cell interconnects

- Corrosion protection of current collectors

- Potential shunt paths 

20-year product life goal

System’s requirements
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- Potential shunt paths 

- Sealing

At the system’s level

- Environmental, temperature extremes, hail, etc.

- Building code requirements

- Maximum power point tracking independent of

any ageing phenomena



Cell chemistry
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� N719 (hydrophilic) vs Z907 (hydrophobic) 

� High-boiling solvent, non-nitrile

� Pt catalyst based on Dyesol Platinum Paste PT1

� 8××××11 or 8××××168 mm active area

N
HO2C

CO2TBA

S



Cell Efficiency

Effectively meeting IEC 
61646 for most practical 
light levels

Loss mainly due to loss 
of Jsc - Why?0
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• Virtually no loss of Voc for 

either dye (≤≤≤≤3.5%) 

• At 1 sun N719 loses less 

Jsc, but some ff (-2%) 

while Z907 loses more Jsc

and gains some ff (+3%)
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Some loss of IPCE over large part of spectrum over the first 300 h at 85oC, then 

almost complete recovery in the 400 to ~570 nm region (due to decreasing 

conduction band level?)  



IPCE

� No major dye desorption or decomposition such as ligand 
exchange

� Loss of IPCE under low intensity monochromatic light is only 
partly responsible for loss of Jsc under higher intensity light, 
particularly 

• after 1,000 h 85oC storage
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• after 1,000 h 85 C storage

• at the higher light levels of 1 sun 

• for Z907  

∆∆∆∆(IPCE) *) ∆∆∆∆Jsc (0.33 sun) ∆∆∆∆Jsc (1 sun) ∆∆∆∆(IPCE) *) ∆∆∆∆Jsc (0.33 sun) ∆∆∆∆Jsc (1 sun)

N719 -6.4% -3.2% -7.4% -3.7% -6.6% -13.1%

Z907 -7.3% -5.8% -14.6% -3.9% -8.0% -18.9%

300 h 1,000 h



Jsc as a function of light level 

and storage time at 85oC
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Serious current limitation at the higher light levels as a 

result of  thermal stress testing, particularly for Z907
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• Significant decrease of Rbr with prolonged 

85oC storage, mainly from 400  to 1,000h

• Significant increase of Rd with prolonged 

85oC storage from 400  to 1,000h

• Significant increase of CE Rct at 0.4 V, vs

decrease at 0.7 or 0.8 V  

• Initial increase of Rbr then decrease from 

400  to 1,000h

• More significant increase of Rd with 

prolonged 85oC storage compared to N719

• Significant increase of CE Rct at 0.4 V, vs

decrease at 0.7 or 0.8 V  



EIS (AC impedance)
Transmission line model 

rbr rbr
rbr

Transport resistance, 
TiO2 resistance
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Electron collection efficiency = Rbr/(Rbr+Rt)

Electron diffusion constant De = d2 / (RtCc)

Electron diffusion length Ln = d (Rbr/Rt)
1/2                d = TiO2 layer thickness

a) F. Fabregat-Santiago, et al Solar Ener. Mat. and Solar Cells 87, (2005) 117-131. b) Hoshikawa, et al. J. Electroan. Chem., 588 (2006) 59

Cc: chemical capacitance = dQ/dVRbr: electron back
transfer resistance



4

5

 N719, initial

Conclusions from EIS

1) 85oC: Rbr ����, Rt: no major change →→→→ ηηηηcoll ���� →→→→ Jsc ����

- to a larger extent for Z907 than N719 (various batches)

- in contrast to light soaking (LS) where ηcoll hardly decreases 
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Conclusions from EIS

1) 85oC: Rbr ����, Rt: no major change →→→→ ηηηηcoll ���� →→→→ Jsc ����

- to a larger extent for Z907 than N719

- in contrast to light soaking (LS) where ηcoll hardly decreases 

2) 85oC: evidence of conduction band downward shift by ~50-100 

mV. Possibly reason for increased IPCE over large part of   
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spectrum. In contrast to light soaking with no significant shift of 

Vcb over 1,000h 

3) 85oC: Rd ����, due to diffusion polarisation under photogeneration, 

particularly for Z907 →→→→ Jsc ����, diffusion limitation →→→→ Vmpp ���� (Voc

is much less affected, no diffusion polarisation) 

I3
- (CE) ���� →→→→ Rct(photogeneration) ����

while Rct(0.7 or 0.8V) ���� due to ‘standard’ Pt activation



Conclusions from EIS
I3

- diffusion polarisation
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Conclusions from EIS
I3

- diffusion polarisation

� Mainly occurs under increasing photocurrents, due 
to I3

- concentration polarisation

� Much less diffusion polarisation under net negative 
currents, due to high [I-]/[I3

-] concentration ratio

− most notable with Z907 as a result of 1,000 h at 85oC

� Much more pronounced for Z907:
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� Much more pronounced for Z907:

− significant increase of Rd as a result of light soaking

− significant increase of Rd as a result of 400 h at 85oC

− very significant increase of Rd as a result of 1,000 h at 85oC

� Much less pronounced for N719:

− almost no increase of Rd as a result of light soaking

− some increase of Rd as a result of 400 h at 85oC

− very significant increase of Rd as a result of 1,000 h at 85oC



Thermal cycling – IEC 61646
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Thermal cycling – IEC 61646
8×168 mm, MPN-based electrolyte
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� No visual changes

� No electrolyte leaks

� After 200 thermal cycles with 168mm long cells

− temporary loss of 20% efficiency, probably due to 

nitrile-based solvent

Thermal cycling – IEC 61646
Results / towards larger devices
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nitrile-based solvent

− largely recoverable after 30 min illumination (@ 1 sun)

� Similar tests for larger multi-cell devices and with 

electrolytes offering improved high temperature stability



� Very promising chemical and mechanical stability achievable 
under IEC 61646  85oC storage and thermal cycling

� Loss of Jsc (rather than Voc or ff) under 85oC storage with the 
specific cell chemistry is due to

− decreasing electron collection efficiency ηcoll

− increasing I - diffusion resistance

Conclusions
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− increasing I3
- diffusion resistance

� Chemical reasons for increased diffusion resistance upon high 
temperature exposure are presently not known

− more in situ spectroscopic and electrochemical work 

required 

� Strategies in place to further improve DSC high temperature 
stability
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Thank you for your attention!

www.dyesol.com


