

Long term stability of dye solar cells meeting IEC 61646 requirements

Hans Desilvestro, Nancy Jiang, Martin Berry and Paul Murray Presenter: Ben Wilkinson (Dyesol UK) 4 April 2012

Outline

- Motivation
- The challenge
- Disentangling degradation mechanisms through DSC accelerated testing
 - Hydrophilic vs hydrophobic dye
 - IV data
 - IPCE (Incident Photon-to-Electron Conversion Efficiency)
 - Electrochemical Impedance Spectroscopy)
- Towards larger devices
- Summary

DYE

Motivation

- Develop integrated understanding of all materials and design aspects of dye solar cells (DSC)
 - To best serve and advise our commercial partners
 - Optimum focus on most promising materials and technologies
- Achieve optimised LCOE for any given application

Commercial In Confidence Copyright Dyesol 2012

The challenge

- To achieve grid parity under a moving target of declining PV prices
- Performance Stability Cost

- 20+ years life time in building applications
- Standards: PV-specific + Building Standards

20-year product life goal System's requirements

At the molecular level

>100 million turnovers	✓	at least for certain dyes/electrolytes
~No dye desorption	~	at least for certain dyes/electrolytes
Loss of NCS-, substitution by I ⁻ , nitriles, imidazoles, etc.	?	Lund et al vs Falaras et al. Low 80- 85°C stability with nitrile solvents
Isomerisation, e.g. N- to S- bound SCN ⁻	?	Not significant according to micro- Raman (Falaras et al)
Decomposition of electrolyte components	?	Little is known, more in situ spectroscopic work required
Stability of electrocatalyst?	~	At least for Pt and certain electrolytes

20-year product life goal System's requirements

At the cell level (Dyesol up to 250 mm length): Seals

Suppress ingress of O ₂ , H ₂ O	✓	Dyesol, Fujikura, Fraunhofer ISE
Suppress egress of solvent	~	Dyesol, Fujikura, Fraunhofer ISE
Performance stability, 85°C/1,000h; -40°C/+85°C thermal cycling; 85°C/85% r.h./1,000h	✓	at least for certain dyes/electrolytes, 85°C/85% r.h.: requires glass-based encapsulation (i.e. similar to CIGS or CdTe), best assessed at the panel level

 Excellent DSC durability under light soaking conditions (~60°C). E.g. Dyesol >25,000 h quasi-continuous illumination
⇒ 25-40 years life time extrapolated, depending on location

R. Harikisun, H. Desilvestro, Sol. Energy, 85, 1179 (2011), "Long-term stability of dye solar cells"

 IEC 61646 85°C/1,000h and thermal cycling tests remain challenging for DSC

20-year product life goal System's requirements

At the module level

- Cell-to-cell interconnects
- Corrosion protection of current collectors
- Potential shunt paths
- Sealing

At the system's level

- Environmental, temperature extremes, hail, etc.
- Building code requirements
- Maximum power point tracking independent of any ageing phenomena

Cell chemistry

- N719 (hydrophilic) vs Z907 (hydrophobic)
- High-boiling solvent, non-nitrile
- Pt catalyst based on Dyesol Platinum Paste PT1
- 8×11 or 8×168 mm active area

At 1 sun N719 loses less
J_{sc}, but some ff (-2%)
while Z907 loses more J_{sc}
and gains some ff (+3%)

IPCE (after 85°C storage)

Incident Photon-to-Electron Conversion Efficiency

Some loss of IPCE over large part of spectrum over the first 300 h at 85°C, then almost complete recovery in the 400 to ~570 nm region (due to decreasing conduction band level?) Commercial In Confidence Copyright Dyesol 2012

J_{sc} as a function of light level and storage time at 85°C

Serious current limitation at the higher light levels as a result of thermal stress testing, particularly for Z907

Commercial In Confidence Copyright Dyesol 2012

EIS Electrochemical Impedance Spectroscopy, 0.4V, 0.33 sun 200 **20**0 N719 -Z_i (Ohm cm²) 1000h 85oC -Z_i (Ohm cm²) 100 100 0.1Hz 0.1Hz 0 0 200 100 300 200 100 300 0 0 Z_r (Ohm∖cm²) Z_r (Ohm cm²)

- Significant decrease of R_b, with prolonged Initial increase of R_{br} then decrease from 85°C storage, mainly from 400 to 1,000h
- Significant increase of R[/]_d with prolonged 85°C storage from 400 to 1,000h
- Significant increase of CE R_{ct} at 0.4 V, vs decrease at 0.7 or 0.8 V

- 400 to 1,000h
- More significant increase of R_d with prolonged 85°C storage compared to N719
- Significant increase of CE R_{ct} at 0.4 V, vs decrease at 0.7 or 0.8 V

EIS (AC impedance) Transmission line model

Transport resistance, TiO₂ resistance

a) F. Fabregat-Santiago, et al Solar Ener. Mat. and Solar Cells 87, (2005) 117-131. b) Hoshikawa, et al. J. Electroan. Chem., 588 (2006) 59

 $\begin{array}{l} \mbox{Electron collection efficiency} = R_{br}/(R_{br}+R_t) \\ \mbox{Electron diffusion constant } D_e = d^2 / (R_t C_c) \\ \mbox{Electron diffusion length } L_n = d \ (R_{br}/R_t)^{1/2} \qquad d = TiO_2 \ layer thickness \end{array}$

Commercial In Confidence Copyright Dyesol 2012

Conclusions from EIS

- 1) 85°C: $R_{br} \clubsuit$, R_t : no major change $\rightarrow \eta_{coll} \clubsuit \rightarrow J_{sc} \clubsuit$
 - to a larger extent for Z907 than N719
 - in contrast to light soaking (LS) where η_{coll} hardly decreases
- 2) 85°C: evidence of conduction band downward shift by ~50-100 mV. Possibly reason for increased IPCE over large part of spectrum. In contrast to light soaking with no significant shift of V_{cb} over 1,000h
- 3) 85°C: R_d \uparrow , due to diffusion polarisation under photogeneration, particularly for Z907 $\rightarrow J_{sc}$ \clubsuit , diffusion limitation $\rightarrow V_{mpp}$ \clubsuit (V_{oc} is much less affected, no diffusion polarisation) I_3^- (CE) $\clubsuit \rightarrow R_{ct(photogeneration)}$ \uparrow while $R_{ct(0.7 \text{ or } 0.8V)}$ \clubsuit due to 'standard' Pt activation

Conclusions from EIS I_3^- diffusion polarisation

Commercial In Confidence Copyright Dyesol 2012

Conclusions from EIS I_3^- diffusion polarisation

- Mainly occurs under increasing photocurrents, due to I₃⁻ concentration polarisation
- Much less diffusion polarisation under net negative currents, due to high [I⁻]/[I₃⁻] concentration ratio
 - most notable with Z907 as a result of 1,000 h at 85°C
- Much more pronounced for Z907:
 - significant increase of R_d as a result of light soaking
 - significant increase of R_d as a result of 400 h at 85°C
 - very significant increase of R_d as a result of 1,000 h at 85°C
- Much less pronounced for N719:
 - almost no increase of R_d as a result of light soaking
 - some increase of R_d as a result of 400 h at 85°C
 - very significant increase of R_d as a result of 1,000 h at 85°C

Thermal cycling – IEC 61646

Commercial In Confidence Copyright Dyesol 2012

Thermal cycling – IEC 61646 8×168 mm, **MPN**-based electrolyte

Commercial In Confidence Copyright Dyesol 2012

Thermal cycling – IEC 61646 Results / towards larger devices

- No visual changes
- No electrolyte leaks
- After 200 thermal cycles with 168mm long cells
 - temporary loss of 20% efficiency, probably due to nitrile-based solvent
 - largely recoverable after 30 min illumination (@ 1 sun)
- Similar tests for larger multi-cell devices and with electrolytes offering improved high temperature stability

Conclusions

- Very promising chemical and mechanical stability achievable under IEC 61646 85°C storage and thermal cycling
- Loss of J_{sc} (rather than V_{oc} or ff) under 85°C storage with the specific cell chemistry is due to
 - decreasing electron collection efficiency η_{coll}
 - increasing I_3^- diffusion resistance
- Chemical reasons for increased diffusion resistance upon high temperature exposure are presently not known
 - more in situ spectroscopic and electrochemical work required
- Strategies in place to further improve DSC high temperature stability

Thank you for your attention! www.dyesol.com