

MATERIALS THAT MATTER[™]

Laser Diodes for (3D) Sensing

Swiss Photonics Meeting, Industrial 3D Vision

June 21, 2018

Dr. Julien Boucart

Overview

- Deployment of 3D sensing in consumer devices
- Derived requirements of 3D sensing technologies on light sources
- Comparison of laser vs LED illumination for Time Of Flight
- Lasers for 3D sensing at II-VI Laser Enterprise

Motivation

Deployment of 3D cameras in consumer space

- Microsoft Kinect
- Intel RealSense
- iPhone X
- LG G3 Auto Focus Assist

Why Semiconductor Laser Diodes?

- High volume
- Low cost
- High reliability
- Compactness
- Low power consumption

Searching for the Killer App

Basic 3D Sensing Methodologies

Time based: Time of Flight

Two methods to retrieve phase

- Direct TOF (1cm=67ps)
 - Fast modulation
 - Fast detectors
- Indirect (CW TOF)
 - E.g. Sine Modulation
- Pros / Cons
 - Simple SW
 - No parallax required (compact)
 - Noise increases linearly with depth
 - Dedicated pixel technology
 - Lower spatial resolution

 Triangulation: Structured light / Stereo

- Parallax transforms depth difference into lateral image displacement
- Two methods
 - Stereoscopic
 - Structured Light
 - Pros / Cons
 - "Standard" CMOS image sensors
 - Good depth resolution
 - Computation intensive
 - Complicated optics
 - Requires robust mechanical platform
 - Stringent reliability requirements
 - Depth noise increases with distance^2

Requirements for Illumination Sources

	Stereoscopic with IR	Direct TOF	Indirect TOF	Structured Light / Active Stereo	
Fast Modulation					
Narrow Spectrum					
Small Spectral Shift with T°					
Eye Safety					
Collimation Requirements					
Individual Emitters Reliability					
Spatial Mode Control					
Power Overdrive					
Illustration	Lit2 (x ₁ , y ₁) Right Camera		Lit4	<u>Lit5</u>	

Laser Diode Technology and Products

Types of Semiconductor Laser Diodes

VCSELs

- Pros / Cons
- Power Scalable
- Fast Modulation
- Stabilized Wavelength
- Easy Packaging
- Emitter Redundancy
- Beam Shaping
- Fill-Factor
- Brightness
- Single Mode Power

Single Mode Fabry Pérot

- Pros / Cons
- Single Mode Transverse
- Assembly Costs
 - **Manufacturing Costs**
- Speckle
- Wavelength shift w T°
- **Beam Shaping**

Single Mode DFBs

- Pros / Cons
 - Single Mode Transverse
- Stabilized Wavelength
- Assembly Costs
 - Manufacturing Costs
 - Speckle

Beam Shaping

More on Specifics of VCSELs vs LED

VCSELs lower divergence: smaller optics / more efficient beam shaping

VCSELs: Fast modulation >30MHz ~200ps rise and fall times

In short pulse and low duty cycle can be overdriven Here 250mW CW yields 5W pulsed

What Illumination Wavelength?

940nm essential for outdoor operation

- Advantages for 850nm
 - 850nm are commercially available Si-based CMOS sensors
 - 940nm sensors are less common (e.g. black Si, Quantum Dots)
- Advantages for 940nm
 - Large spectral content from the sun at 850nm (degraded SNR)
 - 850nm illumination is visible to human eye (red glow)

Alternative: 15xx nm

- Attractive from ambient sunlight and eye safety point of view
- Light sources and detectors not ready for consumer applications

Comparison LED vs VCSEL: A ToF case study

Optical train for a generic Time Of Flight system

Laser-based System: 3x More Efficient

- Assuming ideal diffusor to yield FOI 78° with 90% uniformity
- Assuming 20nm optical notch filter
- For the same efficiency light source, Laser-based system is 3x more efficient

Loss mechanism	Assumptions	LED	VCSEL
Efficiency of light source (η_{EO})		35%	35%
Transmission through diffusor (η_{abs})		90%	90%
Critical angle loss through diffusor (η_q)	n=1.5	95%	100%
Roll off after diffusor (η _{diff})	FOI defined with 90% uniformity	58%	78%
Reflection on object	Ignored here	100%	100%
Transmission through notch filter (T _{filt})	20nm filter	41%	95%
TOF sensor efficiency	Ignored here	100%	100%
Efficiency of electrical modulation	<30MHz >30MHz	100% 0%	100% 100%
Total	<30MHz >30MHz	7.1% 0%	23.3% 23.3%

Laser Array for Time of Flight and Flood Illumination

- 280 emitters
- Suitable for Time of Flight application
- 2.5W at 3.25A operation
- Single longitudinal mode
- Multimode transverse
- 940nm

Example of Product: 940nm DFB

 Tailored for high volume 3D camera structured light applications

Principle of operation

 Embedded grating stabilizes emission wavelength

Characteristics

- Single-mode power (longitudinal and transverse)
- Emission wavelength: 940nm
- Wavelength stabilized over operating temperature range
- High Wallplug Efficiency

Conclusions

- Various technologies for 3D sensing drive different requirements on illumination sources
- Semiconductor laser diodes are well suited to address the consumer 3D sensing market
- VCSELS and DFBs are appropriate light sources for Structured Light, Active Stereo and Time Of Flight systems
- Comparing the benefits of light sources needs to be done together with the systems they enable

References / Sources

• [Lit1]:

- <u>ttps://www.digikey.com/en/articles/techzone/2017/jan/simplifying-time-of-flight-distance-measurements</u>
- [Lit2]:
 - <u>https://www.researchgate.net/figure/Stereo-vision-principle-two-cameras-which-view-the-same-scene-detect-a-common-3D-point_fig1_221908788</u>
- [Lit3]:
 - <u>https://www.researchgate.net/figure/Principle-of-distance-determination-using-direct-time-of-flight_fig3_226367459</u>
- [Lit4]:
 - <u>http://image-sensors-world.blogspot.com/2014/08/mantis-vision-reviews-3d-camera.html</u>
- [Lit5]:
 - <u>https://ch.mathworks.com/matlabcentral/answers/279911-i-want-to-be-able-to-numerically-create-a-speckle-pattern-circles-with-a-set-pixel-size-image-with</u>
- [Lit6]:
 - <u>http://commons.wikimedia.org/wiki/File:Solar_spectrum_ita.svg</u>
 - https://commons.wikimedia.org/w/index.php?curid=11362653
- [Lit7:
 - <u>http://image-sensors-world.blogspot.com/2017/09/cameras-with-black-silicon-sensors.html</u>

MATERIALS THAT MATTER[™]