

Calculation of energy payback time of PV and its determinants

Presentation at the Swiss Photonics Workshop Dübendorf, October22<sup>th</sup> 2013

> Hans-Joerg Althaus PhD LCA expert / scientific coordinator hans-joerg.althaus@quantis-intl.com



#### The principle of Energy payback time calculation

### EPBT[years] =

Primary energy invested in PV system

Primary energy substituted by PV system per year or EPBT[years] =

Electrical energy invested in PV system

Electrical energy substituted by PV system per year



#### The principle of Energy payback time calculation



Primary energy invested in PV system

Primary energy substituted by PV system per year



#### **Definition of "primary energy"**

- Energy embodied in natural resources prior to undergoing any human-made conversions or transformations.
- Energy contained in raw fuels, and other forms of energy received as input to a system.
- Can be **non-renewable or renewable**.



#### What is the "primary energy" of different sources?

- Value choice introduces ambiguity.
  - Differences up to one order of magnitude! to produce the same amount of electricity?
    - → Important to choose consistent values for all energy sources!
    - → Important to compare only EPBT values from different studies if they are consistent!



#### The principle of Energy payback time calculation

EPB7[years] =

Primary energy invested in PV system<sup>1)</sup>

Primary energy substituted by PV system per year

1) For production, use and end of life but without solar irradiation on modules during use phase



# How to calculate primary energy invested in PV system?







H.J. Althaus, Swiss Photonics Workshop, Dübendorf 22<sup>nd</sup> 2013



# Model of the Product system of PV power generation





#### **Production of PV cells (thin film Si)**



H.J. Althaus, Swiss Photonics Workshop, Dübendorf 22<sup>nd</sup> 2013



#### **Influence of production location**





#### **Product system of PV power generation**





#### **Ambiguities in LCA (of PV system)**

- System boundaries
  - Cut-off criteria
  - Inclusion of infrastructure
  - Inclusion of R&D
- Principles for modeling multi-functionality of systems
- Data sources
- Choice of background data



#### **Energy payback time; principle**

EPBT[years] =

Primary energy invested in PV system<sup>1)</sup>

Primary energy substituted by PV system per year

1) For production, use and end of life but without solar irradiation on PV modules during use phase



#### What energy is substituted by PV electricity?





#### What energy is substituted by PV electricity?





#### **Examples**

|                | CED System | electricity generated [kWh/m2] |                      |
|----------------|------------|--------------------------------|----------------------|
|                | [MJ/m2]    | Central Europe                 | South Europe         |
| Crystalline Si | 6500       | 3530                           | 6000                 |
| mc-Si          | 5000       | Values woul                    | d be <sub>5600</sub> |
| Ribbon-Si      | 3500       | ca. 20% hig                    | her 5000             |
| Cd-Te          | 1500       | for production                 | on in<br>4500        |
| Amorpous Si    | 1900       | 2650                           | 3800                 |

Exemplary values in reasonable range for **PV system produced in Europe**. CED of substituted electricity from ecoinvent v2.2





H.J. Althaus, Swiss Photonics Workshop, Dübendorf 22<sup>nd</sup> 2013



## A glimpse beyond energy

Payback of greenhouse gasses emitted



#### **Examples**

|                | GWP System<br>(kg CO2-eq/m2) | electricity generated [kWh/m2] |              |
|----------------|------------------------------|--------------------------------|--------------|
|                |                              | Central Europe                 | South Europe |
| Crystalline Si | 280                          | 3530                           | 6000         |
| mc-Si          | 200                          | 3295                           | 5600         |
| Ribbon-Si      | 150                          | 2940                           | 5000         |
| Cd-Te          | 80                           | 2235                           | 4500         |
| Amorpous Si    | 100                          | 2650                           | 3800         |

Exemplary values in reasonable range for **PV system produced in Europe**. GWP of substituted electricity from ecoinvent v2.2



#### CO<sub>2</sub> payback time [years] **Examples** 160 140 **Differences** in 120 100 electricity 80 gene Value choice introduces ambiguity. subst Differences up to two orders of magnitude! No di PV p $\rightarrow$ Important to choose reasonable substitute! JCTE Crystalline Si mc-Si Ribbon-Si Amorpous Si Cd-Te

H.J. Althaus, Swiss Photonics Workshop, Dübendorf 22<sup>nd</sup> 2013



#### **Examples**

Differences in electricity generated and substituted.

No difference in PV production





#### **Example: Influence of production location**



Assumption: GWP of PV system produced in China is 1.5 times the GWP of the same system produced in Europe.



#### **Examples**

|                | GWP System<br>(kg CO2-eq/m2) | electricity generated [kWh/m2] |              |
|----------------|------------------------------|--------------------------------|--------------|
|                |                              | Central Europe                 | South Europe |
| Crystalline Si | 420                          | 3530                           | 6000         |
| mc-Si          | 300                          | 3295                           | 5600         |
| Ribbon-Si      | 225                          | 2940                           | 5000         |
| Cd-Te          | 150                          | 2235                           | 4500         |
| Amorpous Si    | 120                          | 2650                           | 3800         |

Exemplary values in reasonable range for **PV system produced in China**. GWP of substituted electricity from ecoinvent v2.2



#### **Examples**

Differences in electricity generated and substituted.

No difference in PV production





### **Emissions from scale up of PV**

What happens if PV electricity generation in Switzerland is scaled from today 0.33 to 11 TWh in 2050?



#### Scale-up

Worst case Assumptions:

- C-Si
- Production in CN
- Constant properties (efficiency, GHG intensity)







## Conclusions



#### Conclusions

- EPBT calculation is value based.
- Care has to be taken when comparing EPBT values of different studies.
- Influence of (arbitrary) choices can be larger then differences between PV technologies.
- GHG payback can be much longer then EPBT
- Influence of value choices on GHG payback is much bigger than on EPBT
- GHG emissions from transition towards high solar share in electricity generation are comparably small.



## Contact us

Quantis glaTec Überlandstr. 129 8600 Dübendorf Tel. +41 78 7499741

### quantis-intl.com

- e @Quantis
- 📔 Quantis

in

<u>g</u>+

- **Quantis International**
- +Quantis



#### Allocation: cut off



![](_page_31_Figure_0.jpeg)

![](_page_32_Picture_0.jpeg)

#### **Avoided allocation**

![](_page_32_Figure_2.jpeg)

![](_page_33_Picture_0.jpeg)

#### What energy is substituted by PV electricity?

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_3.jpeg)