SwissLaserNet Workshop / 07.11.2012, Neuchâtel Photonics for Deep Geothermal Energy Harvesting

POTENTIAL of Deep Geothermal Energy in the Energy Debate

Prof. em. Dr. Hans-Olivier Schiegg

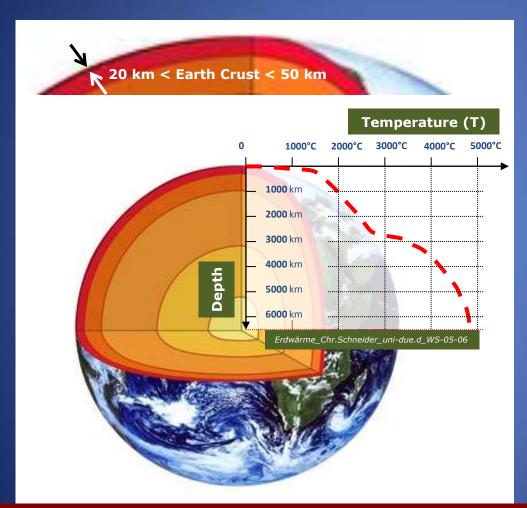
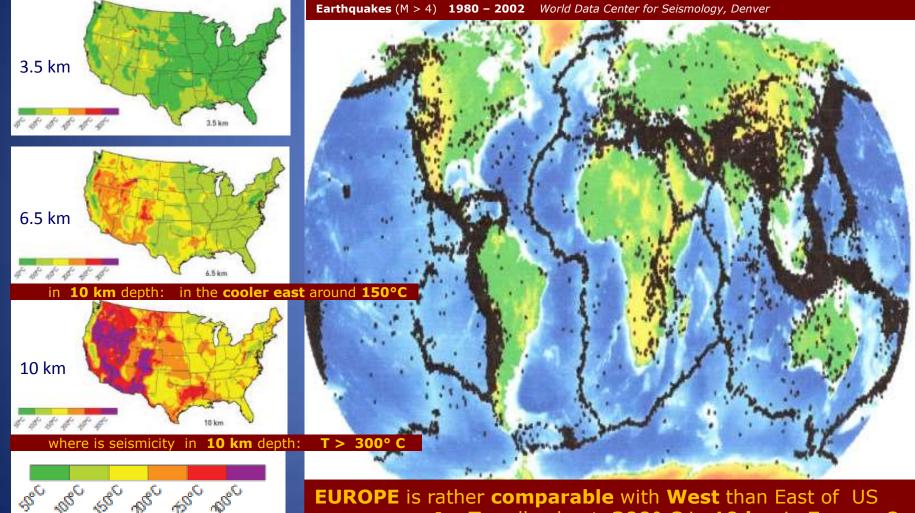

Since **Deep Geothermal Energy** provides both **Heat** and **Electricity**, in short it is called : **GEOENERGY**

Table of CONTENT

- **I PHYSICAL** Potential of Geoenergy
- **II POLITICAL Energy Debate**
- **III QUALIFICATION of Geoenergy**
- **IV ASSETS of Geoenergy**

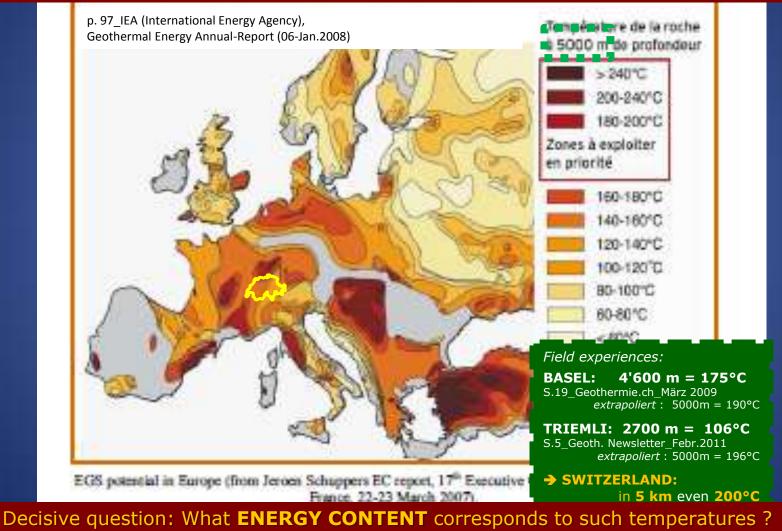
I) PHYSICAL Potential of Geoenergy **a) TEMPERATURE** depending on **DEPTH**


- Within the earth's crust : the temperature gradient is much higher than further inside
- At the inner boundary of the earth's crust :
 T > 1000 °C
- In the earth's center : T = 5000°C
- → 99% of the earth's volume :
 T > 1000°C
- → We are sitting on an inexhaustible occurrence of heat, due to
 - radioactive decay
 - condensation heat
 (the transition of liquid to solid state causes the dint in dotted line)

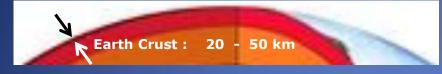
Next point of interest: **DISTRIBUTION** of **temperature** in a **plane** of a certain **depth**

I) PHYSICAL Potential of Geoenergy b) DISTRIBUTION of temperature in a plane on a certain depth

Universally valid the two statements: a) in 10 km depth the temperature is at least 150°C , b) US = representative for globe



EUROPE is rather **comparable** with **West** than East of US T really about 300° C in 10 km in Europe ? \rightarrow

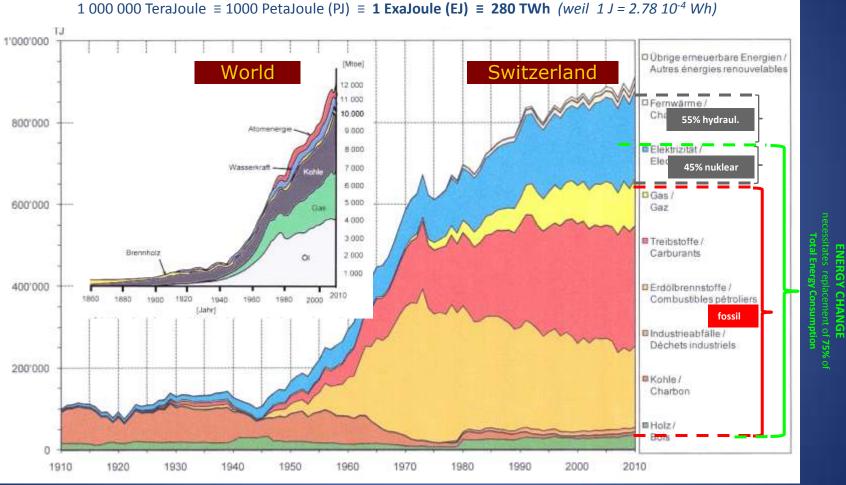

I) PHYSICAL Potential of Geoenergy c) DISTRIBUTION of temperature in 5000m depth in EUROPE

Yes, Europe is comparable to California with about 150°C in 5 km

I) PHYSICAL Potential of Geoenergy **d) ENERGY CONTENT** at such temperatures

The **heat content** of a **cube** with

- a side length of 10 km,
- a temperature of 240°C

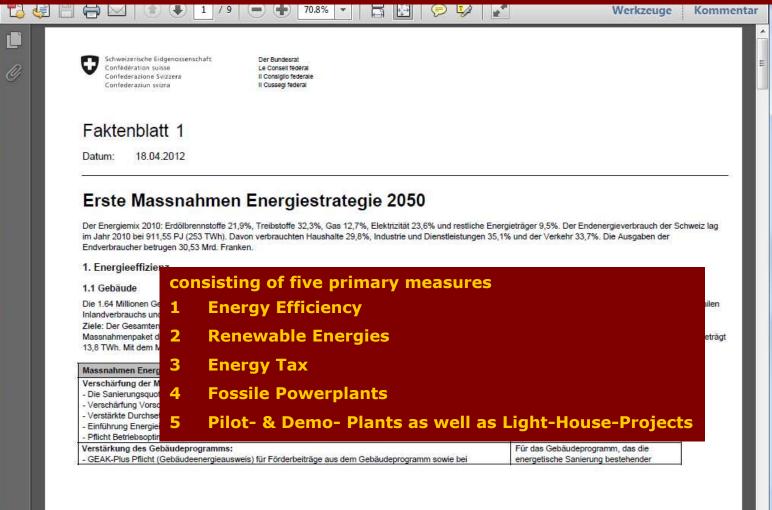

equalizes the **total yearly** energy consumption of the WHOLE world.

Such a cube represents a negilgible tiny little bit of the earth's crust, up to 50 km thick and enveloping the ENTIRE globe

Conclusion : The PHYSICAL Potential of Deep Geothermal Energy is UNLIMITED

II) POLITICAL Energy Debate a) Energy consumption and the "Energy Change"

Überblick über den Energieverbrauch der Schweiz im Jahr 2010 _Bundesamt für Energie BFE_Juni 2011

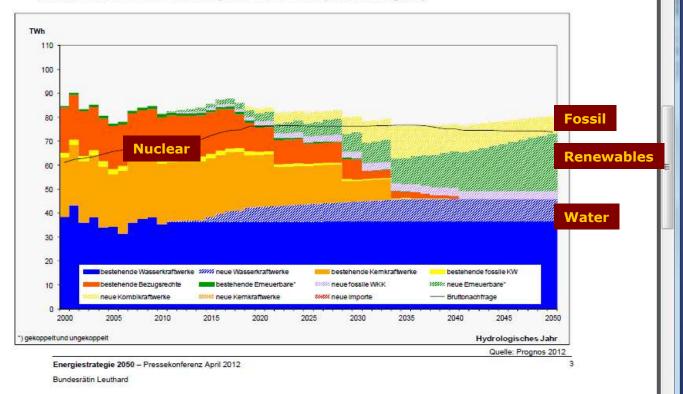

Implementation of Energy Change shall be mastered by Energy Package 2050

SLN_07. Nov 2012_Schiegg

II) POLITICAL Energy Debate

b) Energy Package 2050, as proposed by the Swiss Federal Council

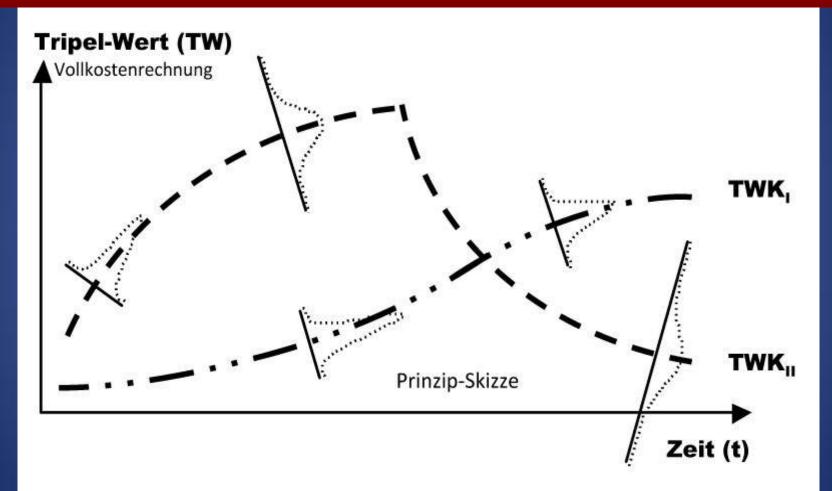
and what are the predicted time curves of production, n.b.: restricted to power only ?



II) POLITICAL Energy Debate c) Forecasted DEVELOPMENT of Energy Mix until 2050

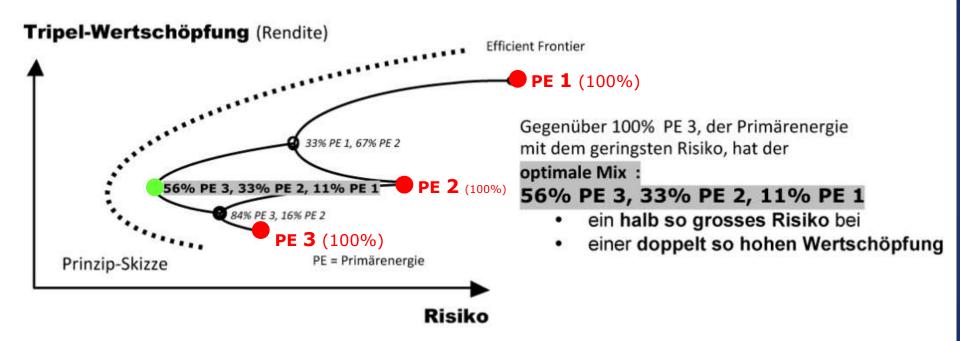
Energy Mix for POWER Supply only

Zusammensetzung des Stromangebotes


auf der Basis des Massnahmenpakets des UVEK (Quelle: Prognos)

Question of interest: What is the optimal mix of the renewables ?

II) POLITICAL Energy Debate d) Optimal energy mix needs monetized Tripel Value Curves (TWK)



Optimal energy mix is provided by the Portfoliotheorie (Markowitz)

SLN_07. Nov 2012_Schiegg

II) POLITICAL Energy Debate e) Optimal energy mix is provided by Portfoliotheorie (Markowitz)

Certainly, Geoenergy will be a dominant player in the optimal energy mix

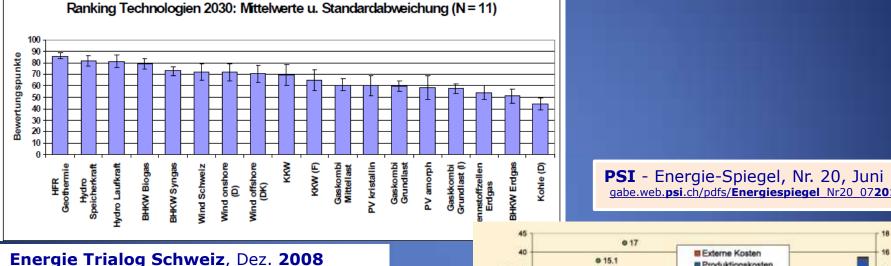
II) POLITICAL Energy Debate

f) What IMPORTANCE might have Geoenergy for the Energy Change(*)?

ENERGIEWENDE = Ablösung nuklearer und fossiler durch erneuerbare Primärenergien Realisierbarkeit der Optionen (grün)											
ie	STROM- Produktion Schweiz		Ablösung durch Zusatz-Potentiale realisierbar :								
			tech- nisch maximal mit er- probter Technik Progno- sen ATWS ⁽²⁾	theoretisch							
Primär-Energie				wenn Vorkommen existent, doch mit erprobter Technik nicht nutzbar, dazu also Innovation notwendig			Kosten und Risiken				
när-l	<u>realisiert</u>			Innovation	Schweiz	Import	Kosten		Tripel- Risiko	even	×
Prin	2011 BFE, Tab.24 ⁽¹⁾						Innovation	HV-Netz & Speicherung	rubiito	Break e	Pay-Back
	%	TWh	TWh		%	%	CHF			В	۵.
fossil	4	3	Energie- wende:	CO2-Seque- strierung	Energie- wende:	Energie- wende:	> 10 Mia.(3)	Devisenexport			
nuklear	41	26	Ersatz	 4. Generat. Fusion 	0	0	> 100 Mia.	> 10 Mia.			
total		29							i		
Wasser	54	34	2	erschöpft	0	0		> 10 Mia.			
Sonne	0.2	0.15	15	à la Desertec	0	> 370	> 10 Mia.	> 10 Mia.			
Wind	0.1	0.07	4	Swimming Mega-Parks	0	> 370	> 10 Mia.	> 10 Mia.			
Boden	0	0	3	Non-abrasive Drilling	> 370	0	< 10 Mia.	0			
Bio	0.7	0.42	4	Förderinitiative BioProFi ⁽⁴⁾	0	< 370	< 10 Mia.	> 10 Mia.			
total	100%	64 TWh	(*) 370% = 237 TWh = Gesamt-Energieverbrauch (=Strom, Wärme, Mobilität) Schweiz/2011 Tab.1 ⁽ⁱ⁾								

(1) Bundesamt für Energie Schweizerische Gesamtenergiestatistik 2011,

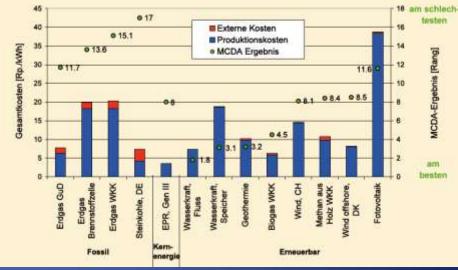
(2) www.akademien-schweiz.ch/../Zukunft Stromversorauna Kurzfassuna


(3) [PDF] 000000290408 - Bundesamt für Energie BFE, S.9

(4) <u>http://www.bmbf.de/foerderungen/16947.php</u>

Geoenergy must have an utterly strong position in the optimal energy-mix

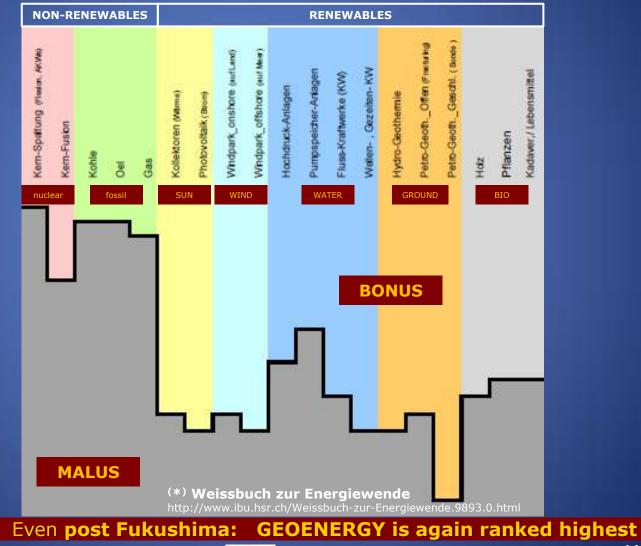
III) QUALIFICATION of Geoenergy a) Sustainability ranking of Geoenergy - Results of EARLIER studies



www.energietrialog.ch/cm data/Renn MCDA Workshops 2008.pdf

In both studies, the qualification of the primary energies concerning sustainability is performed by the so called MCDA (Multi-Ctriteria Decision Analysis), as explained in:

http://www.satw.ch/publikationen/schriften/stromversorgung/index


PSI - Energie-Spiegel, Nr. 20, Juni 2010 gabe.web.psi.ch/pdfs/Energiespiegel Nr20 072010 d.pdf

in both studies: GEOENERGY is ranked very high

a) Sustainability ranking of Geoenergy - Results of RECENT inquiry(*)

"The Potential of Deep Geothermal Energy in the Energy Debate"

The **potential** of "Deep Geothermal Energy" (Geoenergy) is **extraordinarily high :**

- **Theoretically**, the potential is unlimited
- Politically, the decisive assets of deep geothermal energy are the following facts:
 - **autonomy**, because anywhere existent
 - thus, high supply security of energy (power and heat)
 - **no cost** for ressources, hence no export of currencies
 - negligible GAU (maximum credible accident)
 - no earthquakes, when CLOSED heat exchanger,
 - no dangerous emissions, no waste to be disposed
 - high **social acceptance**, thus, democratic support
- **Technically**, the potential
 - **depends on** the **CAPABILITY of accessing and exploiting** the so most interesting **unlimited occurrenc**e of geothermal energy
 - is limited to the economic feasibility of such access and exploitation by necessarily new technologies for deep drilling, as by photonics

Therefore, **new drilling techniques**, based on **Photonics**, will be presented as next

