

#### Generation of a Line Focus for Material Processing from an Array of High Power Diode Laser Bars

R. Baettig, N. Lichtenstein, R. Brunner, J. Müller, B. Valk, M. Kreijci, S. Weiss





#### • This slidepack discusses packaging of a linear arrays of laser bars

- Application : Laser Solid Phase Epitaxy (SPE) of photovoltaic cells
- Based on the use of next generation 808nm laser bars

#### • Sponsoring

- This work was sponsored by EU project <u>HIGH-EF</u>
  - 7th technological framework program under contract 213303

### Laser-SPE



#### • Starting material

- Amorphous silicon [a-Si] film deposited on glass substrate

#### • Growth of multi-crystalline silicon film

- 1. Scanning of the a-Si film by line focus laser
  - Formation of 100 $\mu$ m wide seed crystallites (mc-Si) from the melt
- 2. Deposition of a-Si onto the seed layer of mc-Si
- 3. Furnace anneal
  - Epitaxial growth from the solid phase of deposited a-Si
  - Starting from the seed layer formed by laser treatment



Solution based on Diode Laser Bars



- Requirements for the annealing laser source
  - Short emission wavelength
    - Absorption in silicon decreases towards higher wavelengths
  - High output power concentrated in a narrow (spatial) line
    - Fast melting and cooling rates necessary in the silicon film
  - Scalable concept
    - L=5cm, 10cm,..., 100cm

# Solution based on diode laser bar oclare

• Laser bars are an ideal source to meet the requirements



- Technology available at short wavelengths 800nm-810nm
- High efficiency and power levels can be realized
  - State of the art : 100W / bar at 800nm-810nm
  - Demonstrated advancement in this project: 125W-140W CW / bar
    - E2 facet passivation to avoid COMD
    - Hard soldering of bars onto Micro-Channel Coolers

#### • Low bow assembly $< 1\mu m$ achievable

- 1. Soft soldering : Disadvantage insufficient long term stability
- 2. Soldering onto stress buffer (CuW or CuMoCu) + hard solder (AuSn)
- 3. Use of <u>expansion matched Micro Channel Coolers</u> + hard solder (AuSn)

## **Bar Performance**







- Combine the output of 7x 808nm laser bars
  - Hard soldered onto expansion matched Micro Channel Coolers
  - Arranged in a linear geometry
  - Up to 1.3kW of input power available
- Independently transform Slow and Fast Axis angle spectra
  - Fast axis transformation defines the width 2w of the line focus
  - Slow axis transformation defines the length L of the line focus

### From Bar to Line Focus : Optical Concept



- Fast Axis transformation (define width 2w of line focus):
  - 1. Aspheric Fast Axis Collimation (FAC) lenses

High vertical divergence of bars  $\rightarrow$ 





Vertically collimated beam

2. Concentration via cylindrical Fast Axis Focusing (FAF) Lens







## Implementation : FAC attachment





## Implementation : Homogenizer





## Scaling of Line Length



- Industrial scale applications require annealing of 1m-panels
- Scale-up of the present approach
  - Via joining of lines from multiple sources
  - Angled stitching of 5 cm lines



### Electro-Optic Performance of Line Source



- 920W at 140A
  - Throughput of optics = 87%
- <9nm spectral shift threshold to 130A</li>
  - Thermal resistance

= 0.35K/W





## Parameters of Line Focus



- Peak irradiance, 140A
- Length of line
- Homogeneity
  - Variation of peak intensity





= 10kWcm<sup>-2</sup>

= 45mm

= ±3% rms

# Achieved Performance in Laser-ESP oc are

- Successful application of developed line source demonstrated
  - Collaboration with Institute for Photonic Technology HT Jena
- Seed crystals formed from the melt of a-Si film evaporated on glass
  - Generation of domains>100 $\mu$ m achieved
  - Peak irradiance during processing 6kWcm<sup>-2</sup>
  - Scan speed 1cm sec<sup>-1</sup>



mc-Si film formed by laser annealing IPHT Jena



Setup realized at IPHT Jena

Company Confidential

## Conclusion



- Line source based on newly developed 808nm laser bars presented
  - Field of application:
    Annealing of a-Si films in Laser-ESP growth of mc-Si for solar panels
- Presented line source combines the output of 7 bars on MCC
  - Demonstrated peak irradiance 10kWcm<sup>-2</sup>
  - Length-scalable concept
- Successful application demonstrated in Laser-SPE process
  - Length scaling via stitching presently under investigation
  - Evaluation in the solar cell process scheduled as next step