

Advances in high precision and high-throughput Laser micromachining

B. Neuenschwander, S. M. Remund, M. Gafner, M. W. Chaja

Institute for Applied Laser, Photonics and Surface Technologies ALPS

Outline

Scale-Up Problem with Single Pulses

- Multi-Pulse Strategies
 - Temporal: Pulse bursts (incl. GHz)
 - Spatial: Multi spots
- Beam forming
- Conclusions/Outlook

Ablation model Gaussian Beam

Energy specific Volume [1]:

$$\frac{dV}{dE} = \frac{1}{2} \cdot \frac{\delta}{\phi_0} \cdot \ln^2 \left(\frac{\phi_0}{\phi_{th}} \right)$$

with:

- ϕ_{th} : Threshold fluence
- δ : Energy penetration depth
- ϕ_0 : Peak fluence
- Optimum Point / Maximum specific removal rate

$$\phi_{o,opt} = e^2 \cdot \phi_{th} \qquad \left. \frac{dV}{dE} \right|_{max} = \frac{2}{e^2} \cdot \frac{\delta}{\phi_{th}}$$

[1]: B. Neuenschwander et al, "From fs to sub-ns: Dependence of the Material Removal Rate on the Pulse Duration for Metals", Physics Procedia Vol. 41, pp. 787-794 (2013)

Copper DHP

- High surface quality near optimum point
- Best strategy: Increase repetition rate
- But acceptable surface quality for higher peak fluences
- Scale up by increasing peak fluence i.e. pulse energy is also possible
- Limited repetition rate, higher fluences corresponds to higher average powers:

$$\dot{V}_{n \cdot \phi_{opt}} = \frac{(\ln(n) + 2)^2}{4} \cdot \dot{V}_{\phi_{opt}}$$

Steel AISI 304

- High surface quality near optimum point
- Best strategy: Increase repetition rate
- Formation of cavities starts for peak fluences of about $E_{pulse} = 2 \cdot E_{opt}$
- For higher fluences the surface becomes fully covered by cavities (cone like protrusions CLP)
- Increasing pulse energy fails
- For several 10 W average power extremely high repetition rates and marking speeds demanded

Scale-Up Strategies

Single Pulse Strategies

Fast scanning

Just discussed

Multipulse Strategies

Basic Benefit of Pulse Bursts

[2]: D. Förster et al, "Review on Experimental and Theoretical Investigations of Ultra-Short Pulsed Laser Ablation of Metals with Burst Pulses", Materials 14(12), 3331 (2021)

- Total energy of a pulse is distributed among different sub pulses.
- The fluence of the sub pulses converges to the optimum value
- The process becomes more efficient
- Constant average power:

•
$$n_B \cdot f_{rep} = const.$$

Basic Benefit of Pulse Bursts AISI 304

- Single pulses are most efficient
- But for higher averge powers a break even can be achieved
- From there on a burst situation can be more efficient than single pulses

GHz Burst and Ablation Cooling

A "Nature" publication states that GHz bursts are highly efficient compared to single pulses due to the enhanced "ablation cooling" effect

[4]: C. Kerse et al., "Ablation-cooled material removal with ultrafast bursts of pulses" Nature **532**, 84 – 89 (2016)

The obtained specific removal rates are indeed above the ones for single pulses

AISI 304 GHz Bursts

For AISI 304 high number of pulses per burst i.e. long burst lengths, lead to higher maximum energy specific volumes

AISI 304 GHz Bursts

- For AISI 304 high number of pulses per burst i.e. long burst lengths, lead to higher maximum energy specific volumes
- But the trend is completely identical to the one of single pulses of corresponding pulse duration
- If ablation cooling should really exist it also identically takes place for ns pulses
- Quality aspects not considered here
- For further details we refer to [2]

[2]: D. Förster et al, "Review on Experimental and Theoretical Investigations of Ultra-Short Pulsed Laser Ablation of Metals with Burst Pulses", Materials 14(12), 3331 (2021)

Scale-Up Strategies

Single Pulse Strategies

Fast scanning

limits just discussed

Multipulse Strategies

Pulse Bursts:

Multispots:

https://www.pulsar-photonics.de

Limited to periodic structures

Multi Pulse Drilling

- Standard percussion drilling with n × n spots
- Change position with galvo scanner

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

The high total energy may lead to heat accumulation problems.

- Parallel machining with 12 × 12 Spots [8]
- Simulation

Observed annealing

[8]: D. Gillner et al, "High Power Laser Processing with Ultrafast and Multi-Patallel Beams", JLMN Journal of Laser Micro/Nanoengineering 14(2), 129-137 (2019)

Optimized Galvo Scanning by Synchronization

Free Running Scanner Trajectory for Bi-Directional Marking

Synchronized Scanner Trajectory for Bi-Directional Marking

- Free running
- Diffuse spot pattern
- Laser- and line-frequency do not match

- Synchronized, laser-frequency is master
- Regular spot to spot pattern
- Fully reproducible from layer to layer

Drilling on the Fly by Multi Spot Stamping

- Stamp multi-spot pattern with nxn equally spaced spots
- Move pattern by one spot spot distance d_x between two pulses

Drilling on the Fly by Multi Spot Stamping

- Stamp multi-spot pattern with nxn equally spaced spots
- Move pattern by one spot spot distance d_x between two pulses
- For each point within a frame n² pulses are applied

$$\blacktriangleright P_{av,n} = n^2 \cdot P_{av,1}$$

•
$$k_n = ceil\left(\frac{k_1}{n^2}\right)$$

- For a frame with NxN spots
 - $(N + n 2)^2$ points are marked
 - Mark length: $s_m = (N + n 2) \cdot d_x$
- Several 1000 holes/s are achievable with minimum thermal load

Drilling on the Fly by Multi Spot Stamping

Single Spots: 675 Repetitions, $P_{av} = 640 \text{ mW}$ 5x5 Spots with DOE: 27 Repetitions, $P_{av} = 16$ W

Scale-Up Strategies

Single Pulse Strategies

Fast scanning

00000000

limits already discussed

Multipulse Strategies

Pulse Bursts:

Multispots:

Beam Forming Strategies

 Directly forming of the desired pattern or parts of it by optical elements (DOE, SLM)

Synchronized Optical Stamping with DOE

- DOE to generate an elementary cell and cage system to adjust correct pattern size
- Good beam quality is important (Gaussian beam) for correct structure
- Stitching with synchronized galvo scanner
- Pitch has to be adjusted in both directions

Homogeneous Ablation with 8x8 4 Level Top Hat DOE

- Idea:
 - 8x8 squares of
 20 µm side length
 - 4 level top hats
 0%, 33%, 66%, 100%
 - Equal sum per line and row (400%)

- Synchronized scanning
- Set pulse pulse and line line distance to 20 µm
- Leads to homogeneous flat bottom
- But also low steepness of walls

Homogeneous Ablation with 8x8 4 Level Top Hat DOE

Calc. DOE Pattern:

Achieved Pattern

- Efficiency: 87%
- 14mm scanner aperture cuts higher diffraction orders
- Desired pattern not obtained
- Scanner with bigger aperture needed
- Experiments performed as planned

Homogeneous Ablation with 8x8 4 Level Top Hat DOE

- "theoretical" maximum energy specific volume: $2.75 \frac{\mu m^3}{\mu J}$ (top hat distribution, 4 Level DOE)
- Achieved value: $\approx 2.5 \frac{\mu m^3}{\mu J}$

$$v_{mark,limit} = 20 \frac{m}{s}$$
, $v_{mark,used} = 4 m/s$

Newest Results with single Pulses (@Lumentum) :

$$P_{av} = 180 W, f_r = 1 MHz, \frac{\Delta V}{\Delta t} \approx 16 \frac{mm^3}{min}$$

4 Level Top Hat DOE: Stainless Steel

 homogeneous flat bottom with low walls steepness

Conclusion / Outlook

- The scale-up process of single beams with low pulse energy is limited and would demand extremely high marking speeds
- Working with high pulse energies
 - Bursts may help to distribute the energy among several sub-pulses
 - ► GHz bursts are like ns pulses, but can be used for hybrid processes
 - Multi spot processing (DOE + Scanner) can be applied for periodic structuress
 - Beam forming with DOE allows the efficient use of high pulse energies and reduces the demanded repetition rate
- The combination of beam forming elements with conventional scanning devices is a promising approach to work with future 1000 W of average power.

Thank you for your kind attention