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Quantum-logic-assisted precision spectroscopy of  single molecules

Motivation: Quantum control of  single trapped molecules

Precision spectroscopy 
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relative immunity to environmental changes. Be-
cause the forces within isolated atoms are many
orders of magnitude larger than the external forces
perturbing them, atomic resonance frequencies
are affected only slightly by external fields. Yet
even the small perturbations caused by external
fields limit the accuracy of all atomic clocks.

In the work reported here, we combine recent
advances in optical and atomic physics to con-
struct atomic clocks based on optical transitions in
trapped 199Hg+ and 27Al+ ions, and measure their
frequency ratio. Quantum-jump spectroscopy of
single ions (1, 2) and subhertz lasers (3, 4), together
with the femtosecond laser frequency comb (5, 6),
allowed the first demonstration of an all-optical
atomic clock (7), which was based on 199Hg+.
The development of quantum logic spectroscopy
(8) has enabled the use of 27Al+ as a frequency
standard (9), an ion that is highly immune to ex-
ternal field perturbations (10), but whose internal
state is difficult to detect by conventional methods.

In each of the standards, the frequency that
we attempt to produce in the laboratory is the
resonance frequency of the unperturbed ion, at
rest and in the absence of background electric
and magnetic fields. The deviations from this
ideal condition produce shifts that are subtracted
from the frequencies of two standards, to the
degree that they are known (Table 1). The over-
all uncertainty in these shifts determines the final
accuracy of each frequency standard. Although
the specifics of the two standards are quite dif-
ferent, their respective systematic fractional
frequency uncertainty is similar: 1.9 × 10−17 for
199Hg+ and 2.3 × 10−17 for 27Al+. Importantly,
none of the current uncertainties are fundamental
limits, and both standards can be improved
substantially in the future, with a potential
accuracy of 10−18 or better (1, 11). The ratio of
frequencies for the two optical clocks nAl+/nHg+
reported here marks an order-of-magnitude im-
provement in achievable measurement accuracy
(12). As each of these clocks has an accuracy that
exceeds current realizations of the SI unit of time,
we report the ratio of these optical frequencies,
thereby avoiding the uncertainty (3.3 × 10−16) of
the currently realized SI second (13).

Until recently, such an optical frequency–ratio
measurement (Fig. 1) would have required large
and costly frequency-multiplication chains to
translate between the microwave domain of
electronic frequency counters and the optical do-
main of the clock resonances. The development
of tabletop femtosecond laser frequency combs

(femtosecond combs) allows this translation to
occur in a single, phase-coherent, convenient, and
robust step. Here, the fourth harmonics of two
clock lasers are locked to the mercury and alu-
minum clock transitions at 282 and 267 nm,
respectively. An octave-spanning self-referenced
Ti:Sapphire femtosecond comb (14) is phase-
locked to one clock laser, and the heterodyne
beat-note of the other clock laser with the nearest
comb tooth is measured. The various beat-note
and offset frequencies are combined to yield the
unitless frequency ratio (12). In recent compar-
isons of the frequencies of the two optical clocks
described here, a fiber laser femtosecond comb
(15) has provided a second independent measure
of the frequency ratio.

The 27Al+ 1S0 ↔ 3P0 standard, which uses
quantum logic spectroscopy (8), has been described
previously (9). One 27Al+ ion is trapped together
with a 9Be+ ion,which provides sympatheticDopp-
ler laser cooling as well as the means for internal-
state detection of the 27Al+ ion’s clock state (1S0 or
3P0). The

27Al+ clock state is mapped to detectable
states in 9Be+ repetitively through the ions’ coupled
motion, allowing for up to 99.94% clock state de-
tection fidelity (16). With the ability to detect the
clock state comes the ability to detect state tran-
sitions, whose probability depends on the clock
laser frequency. The frequency of the clock laser
is locked to the atomic transition by alternating
between upper and lower slopes of the atomic
resonance curve and applying frequency-feedback
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Table 1. 27Al+ 1S0 ↔ 3P0 and
199Hg+ 2S1/2 → 2D5/2 clock shifts (Dn), and uncertainties (s) in units

of 10−18 of fractional frequency. AOM, Accousto-optic modulator.

Shift DnAl sAl DnHg sHg Limitation
Micromotion −20 20 −4 4 Static electric fields
Secular motion −16 8 −3 3 Doppler cooling
Blackbody radiation −12 5 0 0 DC polarizability
313-nm Stark −7 2 − − Polarizability, intensity
DC quadratic Zeeman −453 0.5 −1130 5 B-field calibration
AC quadratic Zeeman 0 1 0 10 Trap RF B-fields
Electric quadrupole 0 0.5 0 10 B-field orientation
First-order Doppler 0 1 0 7 Statistical imbalance
Background gas collisions 0 0.5 0 4 Collision model
AOM phase chirp 0 0.1 0 6 RF power
Gravitational red-shift −5 1 − − Clock height
Total −513 23 −1137 19

Fig. 1. Frequency ratio measurement system for the comparison of 199Hg+ and 27Al+ optical clock
frequencies. (Left) The fourth harmonic of a 1126-nm wavelength infrared (IR) laser drives atomic-state
transitions in a 199Hg+ ion (40-ms probe time, 70% duty cycle). The transition rate yields an error signal
to keep the laser frequency locked to the atomic resonance. (Right) A 1070-nm wavelength IR laser
performs the same function for 27Al+ (100-ms probe time, 45% duty cycle), which is coupled to a nearby
9Be+ ion by their mutual Coulomb repulsion for the purposes of sympathetic cooling and internal state
detection. Both lasers are prestabilized to ultralow-expansion glass Fabry-Perot cavities (purple and green
ellipsoids), thereby narrowing their linewidth to about 1 Hz (4). Boxes marked “×2” are second-harmonic
generation stages to convert IR light first to visible and then to ultraviolet wavelengths. The two laser
frequencies are compared by means of a femtosecond comb (12), to which both clock laser systems are
linked by 300-m lengths of actively phase-stabilized optical fiber. The quantities fb,Hg (beat note of the
mercury clock laser with spectral component n of femtosecond comb), fb,Al (beat note of the aluminum clock
laser with spectral componentm of the femtosecond comb), fceo (femtosecond comb carrier-envelope-offset),
and frep (femtosecond comb repetition rate) comprise the frequency ratio measurement (12).
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Molecular qubits
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 Coulomb crystallisation of  cold ions in traps 

Fluorescence images of  Coulomb crystals of  laser-cooled Ca+ ions in an ion trap

Properties of  Coulomb-crystallised ions:

• Translationally cold (μK-mK) 
• Long trapping times (> hrs) 
• Extremely well controlled experimental environment 
• Observe, address and manipulate single particles

• D. Leibfried et al., Rev. Mod. Phys. 75 (2003), 281 
• H. Häffner et al., Phys. Rep. 469 (2008), 155 
• S. Willitsch, Int. Rev. Phys. Chem. 30 (2012), 175
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We propose using THz vibrational transitions in a molecule to 
create a mid-IR molecular clock [1]. The rotational and vibrational 
degrees of freedom in N2+ are highly suitable for clock operation 
and precision-spectroscopic tests of fundamental physics such as 
a possible time variation of the proton to electron mass ratio[2, 3]. 
We are currently developing a complete toolbox for high-precision 
spectroscopy of single molecules using quantum-logic methods, 
their initialization, coherent manipulation and non-destructive 
interrogation by coupling them to a co-trapped single atomic ion.
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The N2+ Molecular Clock

Zeeman spitting of hyperfine-levels in N2+ showing two magnetic-field-insensitive 
transitions               (left) and their derivatives with respect to magnetic field (right).

�mF = 0

 A good clock has two major qualities:• Accuracy (uncertainty)   Low systematic shifts - Zeeman, Stark, BBR• Precision (stability)   Narrow line-width and high frequency

0 2 4 6 8 10

−180

−170

−160

−150

−140

B̄ (G)

E
(M

H
z)

 

 

240

250

260

270

280

 

 v = 0, N = 0, J = 1/2. F = 3/2v = 1, N = 2, J = 5/2. F = 5/2

0 2 4 6 8 10

−1.5

−1

−0.5

0

0.5

1

1.5

B̄ (G)

∂
E

∂
B̄

(M
H
z/

G
)

+ 
65

53
9 

G
Hz
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The (v = 0     v = 1) transition at 4574 nm in 14N2+ has 
many qualities which makes it a good candidate for clock 
operation[7-9]. N2+ is easily cooled by Ca+ and has no permanent electric dipole moment:•  No E1 rovibrational transitions  Extremely narrow M1 and E2 transitions (nHz) [1] •  No Stark and BBR shifts to first order Can be measured to 10-17 fractional uncertainty [3]

By solving the Zeeman Hamiltonian numerically, transitions have been identified that 

are insensitive to magnetic-field fluctuations at a given applied field.

Experimental Setup
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Experimental Sequence
A molecular Nitrogen ion, N2+, is initialized in its rovibrational ground-state with over 95% fidelity using a state-selective 2 + 1’ photon REMPI scheme[6].  The theory to extend REMPI to be hyperfine selective was recently developed[7].

The molecule is sympathetically cooled to the trap secular ground-state [8] by sideband-cooling a common vibrational mode of the Ca+ - N2+ string. This reduces Doppler-broadening and enables Quantum Logic Spectroscopy.

A  rovibrational transition in the electronic ground-state is driven with a narrow-linewidth Quantum Cascade Laser (QCL). The QCL is locked to a frequency comb which is in turn narrowed by locking it to a PDH stabilized 729 nm diode laser.

The excited state is measured by a non-destructive readout scheme which maps the internal state of the molecule onto the atomic ion using their common vibrational modes[4][5]. This is achieved by Quantum Logic Spectroscopy (right) or using a state-dependent optical dipole-force (below).
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Ground-state cooling of a single N2+ was implemented and a ground-state probability of over 98% was ach ieved w i th a heating-rate of 4 quanta/s.

The first blue and red sideband after sideband-cooling
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We propose using THz vibrational transitions in a molecule to 
create a mid-IR molecular clock [1]. The rotational and vibrational 
degrees of freedom in N2+ are highly suitable for clock operation 
and precision-spectroscopic tests of fundamental physics such as 
a possible time variation of the proton to electron mass ratio[2, 3]. 
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The N2+ Molecular Clock

Zeeman spitting of hyperfine-levels in N2+ showing two magnetic-field-insensitive 
transitions               (left) and their derivatives with respect to magnetic field (right).�mF = 0

 A good clock has two major qualities:
• Accuracy (uncertainty)
   Low systematic shifts - Zeeman, Stark, BBR
• Precision (stability)
   Narrow line-width and high frequency
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The (v = 0     v = 1) transition at 4574 nm in 14N2+ has 
many qualities which makes it a good candidate for clock 
operation[7-9]. N2+ is easily cooled by Ca+ and has 
no permanent electric dipole moment:
•  No E1 rovibrational transitions 

 Extremely narrow M1 and E2 transitions (nHz) [1] 
•  No Stark and BBR shifts to first order

 Can be measured to 10-17 fractional uncertainty [3]

By solving the Zeeman Hamiltonian numerically, transitions have been identified that 
are insensitive to magnetic-field fluctuations at a given applied field.
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A molecular Nitrogen ion, 
N2+, is initialized in its 

rovibrational ground-state 
with over 95% fidelity using a 
state-selective 2 + 1’ photon 

REMPI scheme[6].  The 
theory to extend REMPI to 
be hyperfine selective was 

recently developed[7].

The molecule is sympathetically 
cooled to the trap secular ground-
state [8] by sideband-cooling a common 
vibrational mode of the Ca+ - N2+ string. 
This reduces Doppler-broadening and 
enables Quantum Logic Spectroscopy.

A  rovibrational transition in the 
electronic ground-state is driven 
with a narrow-linewidth Quantum 
Cascade Laser (QCL). The QCL is 
locked to a frequency comb which is 
in turn narrowed by locking it to a 
PDH stabilized 729 nm diode laser.

The excited state is measured by a non-
destructive readout scheme which maps the 
internal state of the molecule onto the atomic 
ion using their common vibrational modes[4]

[5]. This is achieved by Quantum Logic 
Spectroscopy (right) or using a state-
dependent optical dipole-force (below).
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98% was ach ieved w i th a 
heating-rate of 4 quanta/s.
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The N2+ molecular ion 

Symmetric homonuclear molecule:

• No permanent dipole moment 

• E1-forbidden rotational-
vibrational transitions: narrow 
E2- and M1-allowed spectral 
lines 

• Very small systematic shifts on 
rotational and vibrational 
spectroscopic transitions 

• No redistribution of  state 
populations due to black-body 
radiation 

• Two nuclear spin isomers in 
the rotational ground state with 
I=0 and 2

+

N
N

K. Najafian et al., Phys. Chem. Chem. Phys. 22 (2020), 23083
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A new approach to state detection and spectroscopy for 
single molecules: QND state readout using coherent motional 

excitation (CME) on a single molecular ion

Advantages: • Improvement of  duty cycle by up to 5 orders of  magnitude 

• Removal of  ensemble averaging

Inspired by previous work on atomic ions by  
D. Hume et al., Phys. Rev. Lett. 107 (2011), 243902

Z. Meir et al., Faraday Discuss. 217 (2019), 561  
M. Sinhal et al., Science 367 (2020), 1213  
K. Najafian et al., Nat. Commun. 11 (2020), 4470

See related work by:

• F. Wolf  et al., Nature 530 (2016), 457

• C.-w. Chou et al., Nature 545 (2017), 203

• E. Clausen et al., arXiv 2005.00529
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Step 3: Application of  an 1D optical lattice near-
resonant with a spectroscopic transition in the 
molecule to generate an optical dipole force
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99.1(9)% 99.4(6)%

State-detection fidelity

M. Sinhal et al., Science 367 (2020), 1213
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Measurement of  electronic transition: 
f  = 380.7011(2) THz 
f  = 380.7007(3) THz (literature)

Einstein A coefficients: 
A = 3.98(11) x 104 s-1 

A = 3.87(14) x 104 s-1 (literature)

Force spectroscopy on a single trapped molecule

Mapping out the AC Stark shift around the R11(J=1/2) transition in X (v=0) -> A (v=2) 
band of  N2+:

M. Sinhal et al., Science 367 (2020), 1213
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Precision spectroscopy using a network for the distribution 
of  the Swiss primary frequency standard 
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Current extent of  network:The Swiss primary frequency and time standard: 

continuous Cs fountain FoCS-2 at METAS (Berne)

Image ꊯ METAS

• Frequency uncertainty: 
2x10-15 

• Contributor to TAI

A. Jallageas et al., Metrologia 55 (2018), 366

Frédéric Merkt Jérôme FaistStefan Willitsch Jacques Morel Ernst Heiri Fabian Mauchle

ETH ZürichUni Basel (coord.) METAS SWITCH
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D. Husmann, METAS

123 km

TAI

113 km
213 km

AOM

AOMLas

comb

Basel

Coupler 95:5
Coupler 50:50

Photodiode
Faraday mirror

EDFA
Fiber segment

Legend

AOM

AOMLas

comb

Zurich

Basel

Bern

Zürich

12
3 

km

213 km

113 km

FR
DE

CH B

Geographic
situation

C

A

Using a dark channel on the SWITCH optical-
fibre network in the telecom L-band at 1572 nm 
for the frequency transfer 

123 km

TAI

113 km
213 km

AOM

AOMLas

comb

Basel

Coupler 95:5
Coupler 50:50

Photodiode
Faraday mirror

EDFA
Fiber segment

Legend

AOM

AOMLas

comb

Zurich

Basel

Bern

Zürich

12
3 

km

213 km

113 km

FR
DE

CH B

Geographic
situation

C

A

Optical layout of  the frequency transfer
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Stabilisation of  the 729 nm master laser at Basel to the METAS standard
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 Summary and conclusions 

A new method for the non-destructive detection of  
molecular quantum states  

Quantum non-demolition and therefore highly sensitive 

A new approach to molecular-ion spectroscopy 

Applications in precision spectroscopy, state-to-state  
chemistry and quantum technologies
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