Quantum-logic-assisted precision spectroscopy of single molecules using a fibre network for the distribution of the Swiss primary frequency standard

Quantum Photonics Workshop Basel, Oct. 28, 2021 Stefan Willitsch Department of Chemistry University of Basel, Switzerland

Motivation: Quantum control of single trapped molecules

• M. Germann et al., Nature Physics 10 (2014), 820

- S. Schiller, V. Korobov, PRA 98, 022511 (2018)
- P. Jansen et al., PRL 115, 133202 (2015)

Molecular clocks

Science 319 (2008), 1808

- M. Kajita, PRA 92, 043423 (2015)
- S. Schiller et. al, PRL 113, 023004 (2014)
- •J.Ph. Karr, J. Mol. Spectr. 300 (2014), 37

Molecular qubits

- J. Mur Petit et al., in "Advances in Atom and Molecule Machines", Springer 2012
- D. DeMille, PRL 88, 067901 (2002)

State- and energy controlled

chemical reactions

- A. Kilaj et al., Nat. Commun. 9, 2096 (2018)
- A.D. Dörfler et. al., Nat. Comm. 10, 5429 (2019)
- T. Sikorsky et. al., Nat. Comm. 9, 920 (2018)

Tests of fundamental physics

- E. Salumbides et. al., PRD 87, 112008 (2013)
- M. Safronova et. al., Rev. Mod. Phys. 90, 025008 (2018)
- H. Loh et al., Science 342, 1220 (2013)

Coulomb crystallisation of cold ions in traps

Fluorescence images of Coulomb crystals of laser-cooled Ca⁺ ions in an ion trap

Properties of Coulomb-crystallised ions:

- Translationally cold (µK-mK)
- Long trapping times (> hrs)
- Extremely well controlled experimental environment
- Observe, address and manipulate single particles
- Lit.: D. Leibfried et al., Rev. Mod. Phys. 75 (2003), 281
 - H. Häffner et al., Phys. Rep. 469 (2008), 155
 - S. Willitsch, Int. Rev. Phys. Chem. 30 (2012), 175

Connecting two worlds: ion traps and molecular beams

Quantum-logic-assisted precision spectroscopy of single molecules

The N₂⁺ molecular ion

Symmetric homonuclear molecule:

niversity

of Basel

- No permanent dipole moment
- E1-forbidden rotationalvibrational transitions: narrow
 E2- and M1-allowed spectral lines
- Very small systematic shifts on rotational and vibrational spectroscopic transitions
- No redistribution of state populations due to black-body radiation
- Two nuclear spin isomers in the rotational ground state with I=0 and 2

A new approach to state detection and spectroscopy for single molecules: QND state readout using coherent motional excitation (CME) on a single molecular ion

Advantages: Improvement of duty cycle by up to 5 orders of magnitude

Removal of ensemble averaging

Inspired by previous work on atomic ions by
D. Hume et al., Phys. Rev. Lett. 107 (2011), 243902

See related work by:

of Base

- F. Wolf et al., Nature 530 (2016), 457
- C.-w. Chou et al., Nature 545 (2017), 203
- E. Clausen et al., arXiv 2005.00529

Z. Meir et al., Faraday Discuss. 217 (2019), 561
M. Sinhal et al., Science 367 (2020), 1213
K. Najafian et al., Nat. Commun. 11 (2020), 4470

Z. Meir et al., Faraday Discuss. 217 (2019), 561 M. Sinhal et al., Science 367 (2020), 1213 K. Najafian et al., Nat. Commun. 11 (2020), 4470

cision spectroscopy of single molecules

:itation two-ion string Ca⁺ N_2^+ *n* = 20 3 $f_{lattice} + f_{trap}$ n = 2 $f_{lattice}$ **f**_{trap} = 1 n iear-Δ_{2,0} $A^2 \Pi_u^+ (v = 2)$ the Ś $X^2 \Sigma_g^+ (v=0) \omega + \delta$ $Ca^+ N_2^+$ ω

Readout of CME using Rabi flops on a Ca⁺ ²S_{1/2} ← ²D_{5/2} sideband transition

M. Sinhal et al., Science 367 (2020), 1213

University of Basel

State-detection fidelity

99.1(9)% 99.4(6)%

M. Sinhal et al., Science 367 (2020), 1213

University of Basel

Force spectroscopy on a single trapped molecule

Mapping out the AC Stark shift around the R₁₁(J=1/2) transition in X (v=0) -> A (v=2) band of N₂⁺:

M. Sinhal et al., Science 367 (2020), 1213

Precision spectroscopy using a network for the distribution of the Swiss primary frequency standard

The Swiss primary frequency and time standard: continuous Cs fountain FoCS-2 at METAS (Berne)

- **Frequency uncertainty:** 2x10-15
- Contributor to TAI

Current extent of network:

Image C METAS

A. Jallageas et al., Metrologia 55 (2018), 366

Uni Basel (coord.)

Stefan Willitsch

Frédéric Merkt

Jérôme Faist

METAS

Jacques Morel

SWITCH

Fabian Mauchle

Ernst Heiri

Optical layout of the frequency transfer

D. Husmann et al., Opt. Expr. 29 (2021), 24592

Phase-noise cancellation (PNC) of the transferred signal at 1572 nm

D. Husmann, METAS

Jacques Morel, METAS

Stabilisation of the 729 nm master laser at Basel to the METAS standard

University of Basel

Acknowledgements

Current group members:

The Sinergia collaboration:

Frédéric Merkt

D. Husmann

Ernst Heiri

Jérôme Faist

Jacques Morel

Fabian Mauchle

Gregor Hegi

Dr. Ziv Meir

Kaveh Najafian

Mikolaj Roguski

Aleksandr Shlykov

Mudit Sinhal

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

