

Image Communication and Understanding (Current Trends)

Danda Pani Paudel Computer Vision Lab @ ETH Zurich

ETH zürich

Computer Vision and Image Understanding

Prof. Dr. Luc Van Gool - https://www.vision.ee.ethz.ch

Deep Image Enhancement

- Make pictures taken by a cheap smartphone camera look as if taken by a DSLR!
- Transform 3D sequences into photorealistic movies

Bad quality images

GAN

GAN

GAN

Enhanced

Unsupervised Image Super-Resolution

- Learn the downsampling operation with unpaired images
- Train the super-resolution network on the generated paired data

Compression

- Learned image compression for better quality
- Practical lossless compression

Ours 1567 Bytes

BPG 3573 Bytes 128% larger JPEG 13959B +790% WebP 9437B +502%

[Agustsson et al.]

 \boldsymbol{x}

Unsupervised Video Generation

Progressive Video Generation

Progressive growing of 3D GANs

• [CVPR'19], Sliced Wasserstein Generative Models, Jiqing Wu*, Zhiwu Huang*, Dinesh Acharya, Wen Li, Danda Pani Paudel, Janine Thoma, Luc Van Gool (*equal contributed)

Sliced Wasserstein GAN loss

TRACE Autonomous Driving: Robust Perception

clear weather

fog

b) Training with Synthetic Fog

c) Foggy Scene Understanding

rain

nighttime

(a) Image

(b) Semantic GT

- Develop robust algorithms for all (adverse) weather and illumination conditions
- [IJCV18, ECCV18, ITSC18, IJCV19, arXiv19], Christos Sakaridis, Dengxin Dai, Luc Van Gool
- CVPR'19 workshop "Vision for All Seasons: Bad Weather and Nighttime"

TRACE Autonomous Driving: Learning to Drive (

1) Camera Rig Systems

2) Navigation Systems

- 1. End-to-End Learning: from perception to control directly
- 2. Accurate: Surround-view Cams + Maps
- 3. Comfortable: reduce motion sickness (jerk)
- 4. Human-like: render human-like driving style
- Accurate, Comfortable and Human-like Driving with Cameras, Sensors and Navigational Maps
- [ECCV18, IV18,, arXiv19], Simon Hecker, Dengxin Dai, Luc Van Gool
- ICCV'19 workshop "Autonomous Driving: Challenges and Trends"

TRACE Autonomous Driving: Talk to your car (

- Human-Robot Communication via Spoken Language
 - Speech understanding, natural language modeling, and computer vision 0
- [CVPR18, WACV18] Arun Balajee Vasudevan, Dengxin Dai, Luc Van Gool

Visual Object Tracking

- **Only** initial target box is given
- Need to learn and update a model (e.g. a classifier) of the target appearance **online**
- Need to estimate accurate target bounding box

EHzürich

ATOM: Accurate Tracking by Overlap Maximization

- Accurate bounding box estimation:
 - We train a network that regresses the bounding box overlap (IoU) between target and estimate
 - Prediction is conditioned on reference target appearance
 - Refined by maximizing the overlap during tracking

CV Lob

[M. Danelljan, G. Bhat, F. Khan, M. Felsberg. CVPR 2018]

&

www.varcity.eu

Two views of the same city

Semantic city modeling

Capture the dynamic city buzz

the static city model provides the ideal backdrop to show dynamic events

Landmarks

a living city rather than a ghost town, with traffic included + use consumer video for change detection

Buildings

Traffic Flow

Events

AR nouveau

3D All The Way

2. Semantic segmentation

4. Architectural rules

 3D All The Way – 8 mins for whole street Semantic Segmentation of Urban Scenes From Start to End in 3D (CVPR 2015) Martinovic, Knopp, Riemenschneider, Van Gool

Dynamic Modelling

Traffic Modelling

Avatars

Visual Recognition by Learning from Web Data

Learn deep models with limited human supervision:

- Deep neural networks are data-hungry, and annotating large scale training data is time consuming and expensive
- Abundant weakly labeled data can be retrieved from Internet

http://www.vision.ee.ethz.ch/webvision/workshop.htm

Facial Expression Recognition

Facial expressions captured

Image-based covariance pooling

Outputs of FC layer

Video-based covariance pooling

- [AAAI'17/18], SPD and Grassmann Manifold Networks, Zhiwu Huang, Jiqing Wu, Luc Van Gool
- [CVPRW'18] Covariance Pooling for Facial Expression Recognition, Dinesh Acharya, Zhiwu Huang, Danda P. Paudel, Luc V. Gool

Human Action Recognition

Predict Actions with 3D Skeletons

Lie group representation for skeletons

Deep Learning for compact Lie group representations

• [CVPR'17], Deep Learning on Lie Gropus for Skeleton-based Action Recognition, Zhiwu Huang, Chengde Wan, Thomas Probst, Luc Van Gool

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Semantic 3D Model of a Building

- 3D Reconstruction using phone + cloud
- Usages: Building renovation, AR/VR
- Mapping contain semantics as well as geometry- e.g. window and its shape
- Input: Images from multiple users
- Goal: 3D CAD model of Buildings

Stereo Vision in Robot-Assisted Retinal Surgery

- · Calibrate camera using tool landmarks and robot kinematics
- Real-time landmark detection (GPU)
- Triangulation of tool to continuously update hand-eye calibration

[Probst et al.]

Parking Spot Modelling—Static and Dynamic cameras

Dynamic + Static cameras

FASHWELL

Deep Fashion Parsing

Locate Fashion items

- on images
- Learning
 - for semantic instances
- Product recognition
 - for business
- Search and Shop
 - by image

Thank you for your attention!

