

Product Development for Organic Photovoltaics

KONARKA®

Jens Hauch

jhauch@konarka.com

Who is Konarka?

Renewable Energy

Printable low-cost Solar Cell

Organic Chemistry

Printed Electronics

Innovators at the Intersections

Renewable Energy Supply

Manufacturing Paradigm

Developing Low Cost, Scalable PV Manufacturing Process

- Low Cost: low temperature, ambient conditions, no clean room, no silicon, lower energy footprint
- Scalable: coating or printing technology, utilization of existing capacity
- Continuous: roll-to-roll high-volume production

Consequence: Thin, lightweight, flexible PV Product.

Company Overview

- Founded in 2001 as spin-out of UMass and University of CA
- Leading IP position with nearly 350 patents and global filings
- Strong 100+ person team with technical and industrial expertise
- \$150+ private funding raised to-date, \$20M government grants
- Global presence with staff in US, Germany, Austria, & China

Capacity Upscaling

Lab

5 cm 1kWatt

2007 25 cm 1MWatt **Production**

2008 150 cm 1GWatt

Production Plant

- 250 to 1500 mm width
- No facing roll
- 100 feet / minute: 1GW per year potential

Main components of the active layer: Semiconducting polymer and Fullerene

OPV Cell Schematic Bulk Heterojunction Polymer/Fullerene

Shifting Solar: Rooftop to Anywhere

Minimum requirements for any PV technology

- Key Parameters are efficiency, lifetime and cost
- The application decides which is the most important parameter.

A successful product must fulfill all 3 requirements:

Efficiency, Lifetime and Cost

Efficiency – State of the Art

State of the art – ALT Production Modules

Extrapolated LT > 8000hrs

State of the art – ALT Production Modules

Expected Lifetime > 3yrs

Oxygen permeation does not appear to be limiting packaged device lifetime

Rooftop Testing

Location Lowell, MA. Facing solar south at 42°≈1600 kWh / m²

Two measurement modes

- a) Outdoor jV in 4th quadrant with modulated load and wireless data read out
- b) Periodic characterization under standard solar simulator

Outdoor Testing

Outdoor Testing

Still measuring device intalled two years ago with poor components

Power Plastic Standard Products

Power Plastic Standard Products

Standard Product Technical Spec. Sheets Available

End User Products

Rollable power supply

Shading elements

Solar Bags: Standard 2W

KT-3000 : 30 Watts Semi-Transparent Module

Acknowledgments

A J Heeger and the "*Center for Polymers and Organic Solids"*, UCSB

The Konarka Technologies R&D team

