Integrated Photonics, Entanglement & Quantum Networks

Rob Thew Quantum Technologies **Department of Applied Physics**

Quantum Communication

Smaller, Faster, Cheaper devices for QKD, QRNG

Network Architectures (Backbone, access, Switching ..)

Implementation Security

New Quantum Primitives Digital Signature, bit commitment ...

Photon Detectors

System & Device Certification

Quantum Sources

Air-based Quantum

Communication

Sensor Networks

Cloud-based Quantum Computing

Practical Prototypes for **Device Independent** Implementations

Quantum Communication with Satellites

Quantum Relays & Networks

Quantum Memories

Global Communication with Quantum Repeaters

Fundamental to Applied - Research to Development

Department of Applied Physics

Quantum Information & Communication

Quantum Technologies Zbinden + Thew

Quantum Repeaters & Memories Afzelius

Quantum Cryptography **Quantum Networks** Quantum Photonics Photon Detection Quantum Biophysics Quantum Metrology

Quantum Memories Quantum Photonics **Optical & Spin** Spectroscopy

Quantum Theory Brunner + Haack

٢	R Last a Tarty Visione	x=(;;)	-₹+("*)	5 > 0	DIN)
(and)	torestil)	$q_{i}^{0} \mathcal{O} e^{i t} \in \mathbb{P}^{2}$ less inversion (19) estros (monet-co) ⁴⁰	φ(t):(μ	, pen] = DlAJy	e) KTL2
2k. ACE Biomodules 2	Stores - 2 tomores Stores - 2 tomores - 3 Stores	and and	184 6 1/32 An . (P.)	e a la l
E Polkater 20 M. EP - 12 P	Sec. Jension of	UND-ND UND-ND UND-ND X	V (7%)	maters	mi
Č	na an ala	Warney -	- AC+A4-	⇒ (A)N = ZAT	(A)
5 5	9	€ 10176, ≫K	e do an		and and

Quantum Nonlocality Quantum Thermodynamics Device Independent **Quantum Information Processing**

www.unige.ch/gap/qic/

QRNG - Quantum Random Number Generation

QRNG - Quantum Random Number Generation

QKD - Quantum Key Distribution

Quantum Key Distribution

QKD - Quantum Key Distribution

QKD - Quantum Key Distribution

Silicon Photonics (Alice)

Everything Integrated Laser source Fast phase modulator Balanced detectors

Silicon Nitride, Silica on Silicon

fs Laser written waveguides

Interferometers Complex circuits

> R. Osellame, Milano Italy

В

Direct transmission: 1000km ($t = 10^{-20}$), 10GHz clock rate...1 photon/300 years!

A

Consider *n* links with transmission *t*

Create entanglement independently for each link

N. Sangouard et al., RMP 83, 33 (2011)

В

3 (2011)

Direct transmission: 1000km ($t = 10^{-20}$), 10GHz clock rate...1 photon/300 years!

Consider *n* links with transmission *t*

Create entanglement independently for each link

Extend by swapping (BSM)

N. Sangouard et al., RMP 83, 33 (2011)

- Create entanglement independently for each link
 - Extend by swapping (BSM)
- Requires the creation AND storage of entanglement
 - Solves/addresses problem of distance/loss

Quantum Memories

Single Photon Detectors

N. Sangouard et al., RMP 83, 33 (2011)

UNIVERSITÉ **DE GENÈVE**

Precision fabrication is key to performance

SEM image of the meander after e-beam

Precision fabrication is key to performance

SEM image of the meander after e-beam

Precision fabrication is key to performance

SEM image of the meander after e-beam

SEM image of 60 parallel nanowire

UNIVERSITÉ **DE GENÈVE**

Precision fabrication is key to performance

SEM image of the meander after e-beam

Different materials

SEM image of 60 parallel nanowire

Broad wavelength range High efficiency, low noise, low jitter Photon number resolving, high count rates

UNIVERSITÉ **DE GENÈVE**

 $\omega_p = \omega_{QM} + \omega_T$

SPDC: Spontaneous Parametric Downconversion

NLC

SPDC

QM

 λT

 λ_{QM}

SPDC: Spontaneous Parametric Downconversion

NLC

SPDC

DFG: Difference-Frequency Generation

 $\omega_p = \omega_{QM} + \omega_T$

 λ_{QM}

SPDC: Spontaneous Parametric Downconversion

DFG: Difference-Frequency Generation

SFG: Sum-Frequency Generation

SPDC: Spontaneous Parametric Downconversion

DFG: Difference-Frequency Generation

SFG: Sum-Frequency Generation

SPDC: Spontaneous Parametric Downconversion

DFG: Difference-Frequency Generation

SFG: Sum-Frequency Generation

NLC

SPDC

CMOS compatible Fabrication. No (Low) Two Photon Absorption.

CMOS compatible Fabrication. No (Low) Two Photon Absorption.

Kippenberg Group Optica., **3** 2334 (2016)

Improved Fabrication High-Q resonator Low Loss Improved coupling

CMOS compatible Fabrication. No (Low) Two Photon Absorption.

Kippenberg Group Optica., **3** 2334 (2016)

Improved Fabrication High-Q resonator Low Loss Improved coupling

All telecom compatible, all fibre, all in a box/rack/chip(?)

Continuous wave & Pulsed (Tuneable repetition rates)

F. Samara, *et al.*, Opt. Exp., **27** 19309 (2019)

Teleporting Entanglement

Pure & Indistinguishable

"Quasi-Deterministic Photon Source"

Single Photon Detection

Single Photon Detection

QRNG & QKD

Single Photon Detection

QRNG & QKD

Entanglement-Based Quantum Communication

A lot of photonic challenges & possibilities! What did we just see?

Single Photon Detection

QRNG & QKD

Entanglement-Based Quantum Communication

