ML for perception and navigation in robotics

Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland

USI - SUPSI

Outline

- 1. Vision-based roughness estimation of metal surfaces
- 2. Vision-based proximity Human-Drone Interaction
- 3. Augmented reality for microscopy applications

With GF Machining Solutions – AGIE Charmilles

1. VISION-BASED ROUGHNESS ESTIMATION OF METAL SURFACES

Visual measurement of surface roughness

Image

$Ra = 0.98 \pm 0.13 \ \mu m$

Image Processing Software

Results

Machine Learning Approach (1)

Machine Learning Approach (2)

Machine Learning Approach (3)

Machine Learning Approach (4)

Machine Learning Approach (5)

Deep Neural Networks as Regressors

Input layer a grid of 64x64 neurons (raw image pixel intensities)

Convolutional and Max-pooling layers

a standard lenet-like architecture for feature extration

Two fully-connected layers

as a regressor

One output neuron

activation representing the Ra value directly

Example results

Example results

Example results

Estimated Ra value map

Cross validated results on cavities

Anomaly Detection Approaches

- Large defect-free datasets for various Ra
- No annotated data available for defects
- Wide variability of possible anomalies:
 - imaging issues (focus/illumination)
 - surface defects

Example input

Anomaly map

Estimated Ra map

Estimated Ra map in non-anomaly regions

Output, user-facing interface

Detection of localized defects

Detection of localized defects

Detection of localized defects

Videos, links, publications and code: https://github.com/idsia-robotics/proximity-quadrotor-learning

2. VISION-BASED PROXIMITY HUMAN-ROBOT INTERACTION

Control a drone flying close to humans

Easy! (using motion tracking)

Proximity control using motion tracking

Goal: vision-based control

A deep net for end-to-end visual control

Datasets

Prediction performance

- ground truth control
- predicted values (by three different models)

Comparison with ground truth control

ground truth control

vision-based control

We repeat the experiment multiple times, and compare the resulting trajectories

Control performance and robustness

Domain randomization for generalization

Preliminary Results

- Trained without domain randomization
- Trained with domain randomization

Videos, links, publications and code: http://bit.ly/stackviz

3. ARTIFICIAL DEFOCUS FOR DISPLAYING MARKERS IN MICROSCOPY Z-STACKS

out-of-focus

Flea chest – original image stack courtesy Daniel Stoupin – Used with permission

Human embryo at 4-cell stage – validation and correction of automated segmentation

Summary

The talk covered three topics

- 1. Vision-based roughness estimation of metal surface
- 2. Vision-based proximity Human Robot Interaction
- 3. Augmented reality for microscopy applications

Contact: alessandrog@idsia.ch
https://idsia-robotics.github.io/